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Abstract

Onset of ventricular tachycardia (VT) is clinically sig-
nificant, including as a trigger to defibrillator implants. In
this paper, we propose a reliable technique to detect such
onset using convolutional neural networks (CNNs). The
proposed CNN adds convolution and pooling layers below
the input layer and above the hidden and output layers of
usual neural network (NN). Such layers would learn suit-
able linear features from training data, while eliminating
the need to extract the traditionally used adhoc features.
Employing such subject-specific features, we reported the
performance of the proposed classifier using Creighton
University ventricular tachyarrhythmia database (CUVT).
In particular, we achieved mean (+ standard deviation)
performance of 95.6 (£ 00.6) using subject-specific evalu-
ation scheme over 100 random independent iterations.

1. Introduction

Cardiovascular diseases (CVDs) are a leading cause of
death worldwide [1]. Accordingly, their management sets
an important healthcare objective. An indispensable tool
in diagnosing and monitoring CVDs is electrocardiogram
(ECQG). In certain scenarios, ECG from the patient is con-
tinuously monitored to detect various arrhythmic condi-
tions. Specifically, in home based monitoring of high-
risk patients, automatic detection of ventricular tachycar-
dia (VT) can trigger the defibrillator implants and correct
such life-threatening arrhythmia. Indeed timely and accu-
rate detection of VT assumes significance in critical CVD
management.

Numerous algorithms have been reported for VT detec-
tion based on various features extracted from time domain,
transform domain and a mixture of features from both time
and transform domains [2-4]. Though such algorithms
have reported high classification performance, majority of
them remain unreliable to be used in practice. Tradition-
ally, a fixed set of hand-crafted features are used in the
classifier design. However, ECG has high inter-patient
variations, and such generic features may not adequately

Computing in Cardiology 2016; VOL 43

ISSN: 2325-887X

represent the underlying characteristic of the signal spe-
cific to the individuals. In addition, the performance re-
ported by various algorithms in the literature lack adher-
ence to Association for the Advancement of Medical In-
strumentation (AAMI) standards [5], making it difficult
to compare with other algorithm and extend for practi-
cal implementation. Against this backdrop, we propose
a novel subject-specific VT detection scheme using con-
volutional neural networks (CNNs), and demonstrated its
utility while adhering to AAMI recommended practice.

The proposed CNN adds convolution and pooling lay-
ers below the input layer and above the hidden and out-
put layers of usual neural network (NN) [6, 7]. While
traditional methods, such as NN and support vector ma-
chine (SVM), operate on ad hoc features, our additional
layers learn suitable linear features from training data,
providing an advantage. We demonstrated the efficacy
of the proposed approach using 35 patients data from
Creighton University ventricular tachyarrhythmia database
(CUVT) database [8]. Specifically, we performed three
experiments, where the respective training data consisted
of subject-oblivious a random 80% of all signal vectors;
unseen subject signal vectors from a random 28 subjects
(80%); and subject-specific signal vectors from a random
28 subjects and suitable 20% duration of rest of the sub-
jects. In each case, remaining vectors were used for test-
ing. Each experiment underwent 100 independent trials,
our system achieved a mean (=4 standard deviation) classi-
fication accuracy of 95.6% (£ 0.06) with subject-specific
evaluation.

The contribution of the present work is summarized as
follows: (i) adopted a subject-specific approach for VT de-
tection, and compared with subject-oblivious (optimistic)
and unseen subject (conservative) experiments; (ii) learned
features using CNN instead of using ad hoc ones; and (iii)
achieved high mean performance as well as high robust-
ness (standard deviations two orders of magnitude lower
compared to existing methods).

The paper is organized as follows. In Section 2 we
present the methodology. In Section 3 we present the re-
sults. Finally in Section 4 we conclude the paper with a
discussion.
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2. Methodology

In this section, we first present a mathematical formal-
ism for ECG classification, then present the CNN based
classifier and finally outline the evaluation strategy for the
proposed classifier.

2.1. Formalism

A desired classifier specifies two mutually exclusive and
exhaustive subsets I'; and I'y of set I' of possible ECG
signal x as follows. Any beat x € I'; is declared normal,
while any signal € I'y is declared a VT. Our goal is to
find the subsets I'; and I'; such that sensitivity Se (fraction
of VT signals correctly detected as VT) and specificity Sp
(fraction of normal signals correctly detected as normal) of
the underlying classifier are maximized.

2.2. Convolutional neural networks

In this paper, we propose a novel ECG classification
approach based on 1-D convolutional neural networks
(CNNs). CNNs adds convolution and pooling layers be-
low the input layer and above the hidden and output layers
of usual neural networks [6,7]. A sample CNN architec-
ture is illustrated in Figure 1 with a single convolution and
pooling layers followed by the the fully connected network
to output layer. Convolutional layer will have & filters (or
kernels) of size q, where ¢ is smaller than the length of the
input signal vector m. Each filter is convolved with the
signal vector, and an additive bias followed by nonlinear-
ity is applied to produce k feature maps of size m — g + 1.
The forward propagation operation in convolutional layer
(from layer [ — 1 to layer [) can be expressed as follows
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where conv is the convolution operation without zero
padding on the boundaries, a(/~! is the input to the (I —
1)t" layer (a' being the input signal vector). bfg_l and
w,(fl_l) are the bias and weights of the k'” filter at layer
[ — 1 respectively. The function f is the non-linear activa-
tion function called the sigmoid or logistic function.

After convolution layer, we decide the size of the pool-
ing region, say p to pool our convolved features. To this
end, we divide our convolved features into disjoint regions
of length p, and take the mean (or maximum) feature ac-
tivation over these regions to obtain the pooled convolved
features. These pooled features from multiple filters are
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Figure 1. CNN architecture.

then stacked together to form a single feature vector. Fol-
lowing the pooling layer there may be any number of fully
connected layers. The densely connected layers are iden-
tical to the layers in a standard multilayer neural network.
Here the forward and the back propagation equations re-
main unaltered from that of the traditional neural networks.

For the binary classfication task (noram versus VT), we
denote the output of the final layer to be O; and O;. We
interpret O and O as the probability of occurrence of
each class (i.e., O + Oy = 1). Finally, given a labeled
training data with y(*) = 0 and 1 representing the labels of
normal and VT respectively, for the ' signal vector. The
cost function at output layer is given by

J == (5 10g(0) + (1 -5 log(1-01")). (3)

i

Our goal is to minimize .J as a function of W and b. To
this end, we train our neural network by initializing each

parameter W,Sl) and each bl(.l) to a small random value and
optimize using batch gradient descent. We now describe
the back propagation algorithm for convolutional and pool-
ing layers, which gives an efficient way to compute the
partial derivatives that are used in gradient descent update
equations. Denoting the error at layer [ + 1 by §(+1) if
the I*" layer is a convolution and pooling layer, error is
backpropagated as

5,(;) = upsample ((W,E,l))T(?,(JH)) f'(z,gl)), 4)

where k indexes the filter number and f’ (z,(j)) is the
derivative of the activation function. The upsample op-
eration propagates the error through the pooling layer by
calculating the error with respect to each unit incoming to
the pooling layer. For mean pooling, upsample operation
uniformly distributes the error from a single pooling unit
to all the units that feed into it from the previous layer.
Whereas in max pooling, the unit which was chosen as
the max receives all the error. Finally, gradients for filter



weights are obtained by convolving the error vector 6,(!)
with the activations corresponding to the filter k at layer [
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With the convolutional network and gradient descent up-
date, the parameters are learnt based on the training data.
Given test signal, signal is forward propagated and output
probabilities O, and Os are obtained. Finally, signal is
assigned to normal class if O is greater than Oy and VT
otherwise. Having equipped with the CNN classifier, we
now present the evaluation strategy to validate the classi-
fier performance.

2.3. Evaluation strategy

Traditionally, partitioning of database into training and
test sets is performed either in a subject-oblivious or
unseen-subject manner. In the former, ECG segments were
extracted from all or a few of the records were clustered,
based on the rhythm label. A certain fraction data from
each cluster was selected as the training set and rest of the
data as test set. In such scheme, same subject data may
be represented in both training and test sets, resulting in
overly optimistic performance estimates. In contrast, the
latter seeks to account for inter-subject variability, and con-
stitutes training and test sets with beats from distinct sub-
sets of records, leading to an overly conservative estimate
of performance.

A hybrid scheme called subject-specific training has
been recommended in AAMI standards, in which a
subject-oriented approach is taken with the following mod-
ification. A few subject-specific data are added to the train-
ing set. Such subject-specific approach often provides a
reasonable performance estimate, which is less optimistic
than the performance estimated using subject-oblivious
scheme, and less conservative than unseen-subject ap-
proach. Accordingly, we adopt a subject-specific paradigm
in the preset work. Further to represent a more practical
performance, we reported the performance averaged over
100 independent random trials.

3. Experiments and results

Now, we turn to evaluating the proposed system. To
begin, we describe the database under consideration and
the preprocessing steps.
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Figure 2. Leraned filters in (a) time domain; (b) frequency
response

3.1. Database and Preprocessing

We validated the proposed method using Creighton
University ventricular tachyarrhythmia (CUVT) database
available from the PhysioBank archives [8]. The database
consists of 35 eight-minute ECG recordings digitized at
250 Hz with 12-bit resolution over a 10V range. Each
record is annotated with the onset and offset of VT
episodes. We segmented entire record into overlapping
signal vectors, each of duration five seconds with an over-
lap of 0.2 seconds, amounted to 22,772 such vectors.

3.2. Learned features

We used a single convolution layer and a pooling layer
followed by logistic regression for classification. We used
5 filter kernels with length 101 and a pool dimension of 2.
As alluded earlier, the proposed scheme learns linear fea-
tures to perform the classification. Figure 2 illustrates the
kernels learned and their frequency response. Note that,
each filter passes only certain frequencies that are opti-
mized for classification performance on training set. The
feature vector generated after convolving each of the fil-
ter with both normal and VT signal is shown in Figure 3.
Clearly R-peak values are enhanced in various filters for
normal signals. While for VT signals with no clear R-peak,
each filter has a response that distinguishes VT signal from
its rival class.

3.3. Classification performance

As mentioned earlier, we evaluated our system using
three schemes of partitioning of database into training and
test sets. (i) Subject-oblivious scheme selects a random
80% of all signal vectors for training and rest of the data
for testing. (ii) Unseen-subject selects a random 28 sub-
jects (80%) data for training and rest of the subjects data
are used for testing. (iii) Subject-specific scheme selects
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Figure 3. (a) Typical normal signal; (b) Typical VT signal;
Output of the convolution layer (features) corresponding to
five filters for (c) normal signal and (d) VT signal

Method Se (%) Sp (%) Acc (%)
Subject-oblivious | 98.3+0.06 | 98.5£0.03 | 98.44+0.04
Unseen subject | 94.4+0.07 | 89.2+0.1 924+0.06
Subject-specific | 95.6+0.06 | 96.61+0.03 | 95.940.03

Table 1. Classification performance

signal vectors from a random 28 subjects and first 20% of
the signal vectors (both normal and VT) from remaining
7 subjects for training. Rest of the data from 7 subjects
were used for testing. In each case, we recorded the classi-
fier performance for 100 independent trials, and mean and
standard deviation of sensitivity (Se), specificity (Sp) and
accuracy (Acc) are reported in the Table 1. Clearly, the
mean performance of subject-oblivious scheme is signif-
icantly high. However, it remain unrealistic as the same
patient data is well represented in both training and test
sets. Unseen-subject represent a conservative estimate of
performance in view of the subject-data not represented
in the training and test sets. With addition of patient-
specific data, subject-specific scheme represent realistic
performance of the classifier. Direct comparison of perfor-
mance with other methods may not be valid as the classifi-
cation performance depends on the data adopted for train-
ing and testing of the classifier.

4. Discussion

In this study, we proposed a patient-specific VT detector
using CNNs. We optimized weights of the convolutional
layer to extract the features specific to the subject that max-

imizes the underlying classifier performance. Our solu-
tion not only negates the necessity to extract hand-crafted
manual features, but also eliminates the need for any kind
of pre- and post-processing of ECG signals, rendering it
to be readily useful for real-time applications. We vali-
dated the performance of our classifier on the benchmark
CUVT database while adhering to AAMI standards. The
proposed method yields a mean (standard deviation) sen-
sitivity and specificity of 95.6% (& 0.06) and 96.6% (+
0.03) respectively with subject-specific evaluation. Such
evaluation is deemed as a more realistic estimate of poten-
tial performance of the proposed method in real applica-
tions. As a future work, we intend to test the performance
of the system on a larger set of database and design the
hardware implementation. Further, considering the criti-
cality of VT detection, classification has to be designed to
optimize high sensitivity detection.
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