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Abstract

Accurate prediction of shock success would avoid futile
defibrillation attempts that may damage the myocardium,
and would help optimizing treatment decisions for
out-of-hospital cardiac arrest (OHCA) patients. This work
applies the Smoothed Nonlinear Energy Operator (SNEO)
to analyze the energy content of the pre-shock ventricular
fibrillation (VF) waveform adquired by automated external
defibrillators (AED).

A database of 419 shocks was analyzed and shock
outcome predictors were calculated in the a 5-s pre-shock
ECG segment. The SNEO was compared to some classical
VF features. For each feature a detector of successful
shocks was designed minimizing the Balanced Error Rate
(BER). Finally, using SNEO as shock outcome predictor
the minimun pre-shock segment duration was determined.
The SNEO has proven to be a good shock outcome
predictor even for 2-s segments and it could be used to
optimize treatment decisions for OHCA patients.

1. Introduction

In sudden cardiac arrest (SCA) two early interventions
are key for the survival of the patients, early defibrillation
and early cardiopulmonary resuscitation (CPR). Useless
interruptions or ineffective chest compressions (CC)
during CPR, in addition to delays in CPR or in the access to
the automated external defibrillator (AED) may adversely
affect patients’ survival. The survival rate also decreases
with every futile defibrillation attemp due to damage to
the myocardium produced by shocks. Consequently an
accurate prediction of optimal therapy, defibrillation or
continuation of CPR, is of mayor relevance.

Predicting defibrillation success, i.e the development of
accurate shock outcome predictors, would help optimizing
timing of defibrillaion. A noninvasive approach to
shock outcome prediction is ECG analysis of the VF
waveform, through which many predictors/features have
been developed over the years [1–3].

In this work, we present the Smoothed Nonlinear
Energy Operator (SNEO) [4] as a shock outcome predictor.
SNEO is based on the analysis of the local energy content
of the VF-waveform and in this work we also compare it
to other classical shock outcome prediction features. After
that, we determine the minimun ECG pre-shock segment
duration for an accurate shock outcome prediction using
SNEO.

2. Methods

2.1. Data collection and annotation

A dataset of 1009 out of hospital cardiac arrest (OHCA)
cases was used for this study. The OHCA patients
were treated by the basic life Support (BLS) services of
the Basque Health Service (Osakidetza) between January
2013 and June 2015. The Emergency service of the
Basque Autonomous Community is a two-tier system,
where BLS is the first at scene and the patients were
treated with automated external defibrillators (AED). Data
from the following AEDs were collected: LifePack
1000 (Physio-Control, Redmond, WA, USA), ZOLL
AED PRO (ZOLL Medical, Chelmsford, MA, US)
and Philips Medical Systems Heartstart FR2 (Philips
Medical Systems, Andover, MA). The ECG resolution
and sampling frequencies of the devices were: 4.8/4.8/2.5
µV and 125/250/200 Hz, respectively. The ECG data
was recorded in the three AEDs, but only using LifePack
1000 the thoracic impedance (TI) was recorded. Using
the manufacturer’s custom tools all data and the messages
from the devices were exported to a common MATLAB
format. The signals were resampled to a common
sampling rate of 250 Hz. Shocks were identified using
the messages from the AEDs, and a 30-s pre-shock
ECG interval for analysis, and a 70-s post-shock interval
to annotate the outcome were extracted. Shocks were
considered successful if sustained QRS complexes (rate>
30min−1) appeared within one minute. Cases where there
was no ECG signal, it was corrupted by CC-artefacts
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or any other noise, or the rhythm annotation was not
possible were removed. The 5-s preshock VF segments
1-s prior the defibrillation were extracted. The final dataset
contained a total of 419 shocks from 163 patients, 107 of
which (65 patients) were successful and 312 (125 patients)
unsuccessful.

2.2. Shock outcome predictors

The segments of the database were preprocessed using
a 4th-order bandpass elliptic filter with 1 dB of passband
ripple, 30 dB of stopband attenuation and a typical
AED passband of 0.5-30 Hz. The filter suppressed high
frequency noise and baseline oscillations. The non-linear
Teager-Kaiser Energy Operator (TKEO) [5,6] was applied
to the ECG segments. TKEO (ψk[x(n)]) is expressed in
the discrete domain as the Equation (1), where the constant
k is the lag parameter and x(n) is the VF-segment:

ψk[x(n)] = x2(n)− x[n− k]x[n+ k] (1)

Then TKEO was convolved with a Kaiser window, to
obtain the Smoothed Nonlinear Energy Operator (SNEO):

ψS,L[x(n)] = ψk[x(n)]⊗ wL(n) (2)

were ⊗ denotes convolution and wL(n) represents the
smoothing Kaiser window of length L + 1. The Kaiser
window is defined by:

w[n] =
I0
(
β ·
√
1− (2n/L− 1)2

)
I0(β)

(3)

where I0 is the zero order modified Bessel function.
In SNEO, the window length is associated to the lag
parameter by L = 4k + 1.

The parameter β of the kaiser window can be adjusted to
approximate the most common windowing functions [7],
as shown in Table 1.

SNEO was computed also for different sampling
frequencies: 250, 125, 85, 62 and 50 Hz. Therefore SNEO
depends on the k, β and fs. Finally the shock outcome
predictor based on SNEO was obtained by computing
SNEO’s median value, as it is customarily done for the
amplitude or slope [2].

To benchmark the performance of the new predictor
several classial predictors were computed: average
Peak-to-Peak amplitude (PPA) in the time domain [2, 8],
Median Slope (MdS) in the slope domain, Amplitude
Spectrum Analysis (AMSA) [1, 9] and Power Spectrum
Analysis (PSA) in the spectral domain. To compute the
spectral features, a hamming window and a 2048-point
FFT were applied.

Type of window β
Rectangular 0
Barlett 1.33
Hanning 3.86
Hamming 4.86
Blackman 7.04

Table 1. Values of β and window equivalences
.

2.3. Data Analysis

The optimization of the SNEO predictor was performed
minimizing the Balanced Error Rate (BER) defined as:

BER = 1− 1
2 ·
(
Se + Sp

)
(4)

where sensitivity, Se, was defined as the percentage of
successful shocks correctly classified, and specificity, Sp,
the unsuccessful shocks correctly classified.

The optimal working point was determined using a
Leave one patient out cross validation (LOPCV) scheme
for each feature. Results for every predictor were given
in terms of Se, Sp, BER, Positive Predictive Value (PPV),
Negative Predictive Value (NPV), and the Area Under the
Curve (AUC), from the Receiving Operating Curve (ROC),
analysis.

3. Results

3.1. Optimization of SNEO

To find the optimum working point the SNEO was
computed for k = 1 up to 15, for fs = 250, 125, 85, 62 and
50 Hz, and for β= 0 up to 12, increasing β in 0.1. Figure 1
summarizes the results obtained for this simulation for a
value of β = 1.33. As shown in the figure reducing fs
and L (or k) yields similar results, i.e. a lag of 8 for
fs = 250Hz is equivalent to a lag of 4 for fs = 125Hz.

Figure 2 shows the effect of the shape of the window
(β). For each β the BER plotted corresponds to the optimal
value of k. As shown in the figure differences in BER
are small so the choice of window does not affect the
accuracy of the feature, and sampling frequencies should
be kept above 80Hz. Figure 3 shows the effect of k in
terms of the mean BER (averaged over all values of β), for
fs = 250Hz. The optimal lag was k = 8 for this sampling
frequency, but reducing fs should be accompanied by a
proportional reduction of k. To analyze the effect of the
window shape the analysis of Figure 3 was replicated for
different shapes of the window, as shown in Figure 4.
Optimal values of β were around 9, which confirm the
results shown in Figure 2.

Finally we explored the possibilty of reducing the
analysis segment, as shown in Figure 5. The values were
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Figure 1. BER for the different sampling frequencies in
function of k, with β = 1.33.
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Figure 2. BER in terms of β. The BER is the minimum
value obtained for each β (so k may differ for each point).

obtained for fs = 250Hz, β = 9 and k = 8, and they show
that segment lengths as short as 2-s can be used without
significant losses in accuracy.

3.2. Comparison with classical predictors

We compared the AUC for our new classifier (optimal
working point) with the classical predictors as described in
literature [3]. Results are shown in Table 2 and in Table 3.

The SNEO showed the best results with a BER of 0.22,
Se of 81.3% and Sp of 74.7% as shown in Table 3. These
results correspond to the best results obtained with k = 8,
β = 9 and fs = 250Hz, as shown in Figure 4.
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Figure 3. Mean values of BER for every k considering
fs = 250Hz averaged for β = 0 : 12.

4 5 6 7 8 9 10 11 12
k (samples)

0.2

0.225

0.25

0.275

0.3

0.325

B
E

R

- = 2

- = 9

- = 15

Figure 4. BER curves in function of k and β
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Figure 5. BER, Se and Sp in function of the segment
duration.

 

 

  



Feature Se (Sp=90) Sp (Se=90) AUC
PPA 42.1 53.5 0.814
MdS 49.5 55.4 0.826

AMSA 53.3 53.2 0.814
PSA 43.9 52.6 0.816

SNEO 37.4 55.1 0.808

Table 2. ROC analysis of the shock outcome prediction
features, using 5-s segments, in terms of Se, Sp and AUC

Feature Se Sp PPV NPV BER
PPA 78.5 72.8 49.7 90.8 0.244
MdS 75.7 75.3 51.3 90.0 0.245

AMSA 71.0 76.9 51.4 88.6 0.260
PSA 73.8 74.4 49.7 89.2 0.259

SNEO 81.3 74.7 52.4 92.1 0.220

Table 3. Analysis of optimal working point of the shock
outcome prediction features using 5-s segments in terms of
Se, Sp, PPV, NPV and BER

4. Conclusions

We introduced the SNEO as a new shock outcome
predictor and we have compared its results with four
classical VF-waveform features. We have used a database
of 419 shocks extracted from OHCA cases treated by the
BLS services. The SNEO with fs = 250Hz, k = 8 and
β = 9 showed the lowest BER. In addition, for segments
as short as 2-s SNEO showed similar Se and Sp values.
We conclude that the SNEO could be useful to optimize
treatment decisions for OHCA patients.
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