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Abstract 

Deep learning has been integrated into several 
existing left ventricle (LV) endocardium segmentation 
methods to yield impressive accuracy improvements. 
However, challenges remain for segmentation of LV 
epicardium due to its fuzzier appearance and 
complications from the right ventricular insertion points. 
Segmenting the myocardium collectively (i.e., 
endocardium and epicardium together) confers the 
potential for better segmentation results.  

In this work, we develop a computational platform 
based on deep learning to segment the whole LV 
myocardium simultaneously from a cardiac magnetic 
resonance (CMR) image. The deep convolutional network 
is constructed using Caffe platform, which consists of 6 
convolutional layers, 2 pooling layers, and 1 de-
convolutional layer. A preliminary result with Dice 
metric of 0.75±0.04 is reported on York MR dataset. 
While in its current form, our proposed one-step deep 
learning method cannot compete with state-of-art 
myocardium segmentation methods, it delivers promising 
first pass segmentation results.  

1. Introduction

Automatic left ventricle (LV) segmentation from 
cardiac magnetic resonance (CMR) images is a 
challenging task and it is difficult to achieve highly 
accurate results without manual intervention. Over the 
years, various image processing techniques have been 
proposed to automatically and robustly segment the LV 
endocardium.  

While intuition might suggest that segmenting the 
myocardium as a whole is more amenable from the 
perspective of human perception, it is non-trivial from an 
algorithmic point of view. Efforts to get a computer 
machine to learn to segment the images in a way similar 
to the human perception have recently been made 
possible by the increasingly powerful computing 
resources and the availability of vast amount of data.  

Deep learning [1, 2, 3] is an advanced machine 
learning technique that mimics the cognitive processing 

of the human brain using neural networks with multiple 
hidden layers. Among its many applications, this 
technique has been used in object recognition, and has 
been employed to segment the LV endocardium to yield 
impressive accuracy improvements [4, 5, 6]. However, 
challenges remain for segmenting the LV epicardium due 
to its fuzzier appearance. In addition, the epicardial 
boundary is not completely distinct due to the presence of 
the right ventricle insertion points. 

On the other hand, past research works on LV 
myocardium (i.e., endocardium and epicardium) 
segmentation have been primarily confined to non-deep 
learning approaches. The results of these works are often 
compared in terms of a dice metric (DM), which is a 
statistic metric to measure the overlap between two 
superimposed image areas, in order to compare the 
accuracy of automatic segmentation result with that of the 
manual one.  

Hu et al. proposed an automatic LV myocardium 
segmentation using local binary fitting and dynamic 
programming [7], producing a DM result of 0.89±0.04 
and 0.93±0.02 for the endocardium and epicardium 
segmentation, respectively. Uzunbas et al. performed a 
semi-automatic LV myocardium segmentation using 
graph cut and deformable models [8]. They obtained a 
DM of 0.82±0.06 and 0.91±0.03 for the endocardium and 
epicardium segmentation respectively, using the 
MICCAI09 LV 2009 Challenge dataset [9]. Using 
a priori anatomical information, Sjögren et al. proposed a 
semi-automatic segmentation of MaR (Myocardium at 
Risk) [10] and obtained a DM of 0.85 ± 0.07 for some 
specific datasets. Similarly, the work by Tufvesson et al. 
was based on a priori regional criteria and infarct region 
from late gadolinium enhanced (LGE) CMR to define 
MaR using myocardial intensity classification by 
Expectation Maximization [11]. They obtained a DM of 
0.85 ± 0.08 for 183 datasets. Petitjean and Dacher 
presented a thorough survey of other existing techniques 
up to year 2011 for related myocardium segmentation 
work [12]. 

Given the excellent results of machine learning 
(especially the recent deep learning) techniques for the 
LV endocardium segmentation, we explore the potential 
of deep learning for LV myocardium segmentation.  

 

Computing in Cardiology 2016; VOL 43 ISSN: 2325-887X  DOI:10.22489/CinC.2016.025-237 

  



Table 1. Layer parameters of the proposed model 
Layer Depth Filter Stride Parameters 
Input 1 --- --- 0 
1. Conv 100 3x3 1x1 3x3x3x100 
2. Conv 100 3x3 1x1 3x3x100x100 
3. Max 100 2x2 2x2 0 
4. Conv 200 3x3 1x1 3x3x100x200 
5. Conv 200 3x3 1x1 3x3x200x200 
6. Max 200 2x2 2x2 0 
7. Conv 300 3x3 1x1 3x3x200x300 
8. Conv 2 3x3 1x1 3x3x300x2 
9. DeConv 2 3x3 4x4 3x3x2x2 
Output 1 ---- ---- 0 

2. Methodology

In the past years, deep learning techniques, especially 
deep convolutional networks (DCN) [13], have 
outperformed the state-of-art methods in many computer 
vision tasks [14, 15, 16]. The typical use of convolutional 
networks is for categorizing images into different classes. 
The latest development of the fully convolutional 
networks (FCN) [17, 18] enables image segmentation by 
assigning a class label for each pixel within the image in a 
more elegant architecture, where the fully connected 
layers are replaced by spatial convolutional layers to learn 
per-pixel labels end-to-end from whole-image inputs and 
their corresponding whole-image ground truths. The 
method proposed in this study is developed based on the 
FCN architecture.      

2.1. Network design 

The deep convolutional network is constructed using 
the Caffe deep learning platform. It consists of 6 
convolutional layers, 2 pooling layers, and 1 de-
convolutional layer. The layout of the network 
architecture is shown in Figure 1. Each convolutional 
layer is followed by a Rectified Linear Unit (ReLU) 
activation function, while the de-convolutional layer is 
followed by a Softmax activation function. The layer 
parameters are trained using myocardium-annotated CMR 
datasets from York University [19]. The details of layer 
parameters in each layer are listed in Table 1.  

2.2. Accuracy function 

From the perspective of classification, myocardium 
segmentation from a given CMR image can be regarded 
as a binary classification problem, i.e., each pixel is 
classified as the myocardium or the background. This is a 
class imbalance problem, since there is a lower 
percentage of pixels in the CMR image that corresponds 
to the myocardium class. So, suppose that a model simply 
predicts all pixels to be belonging to the background, its 
accuracy performance will still be quite good even though 
it fails to actually detect any pixels belonging to the 
myocardium.  Hence, a new accuracy function based on 
the dice metric (refer to Equation 1 in Section 3.2) is 
designed as a precision indicator of the image 
segmentation, to be used during the network training.  

3. Experiment

3.1. Image set 

The CMR dataset used in our study is from York 
University [19]. The dataset contains 5,011 myocardium-
annotated CMR frames acquired from 33 subjects. 
Among them, 3,229 frames from 21 subjects were for 
network training, 861 frames from the other 6 subjects 
were for validation, and 921 frames from the remaining 6 
subjects were for testing. We perform affine 
transformations (rotation and flipping) to augment the 
training set in an effort to improve the model 
generalization. 

3.2. Evaluation metric 

    Dice metric (DM) is the most popularly used metrics to 
perform a quantitative evaluation of the segmentation 
results. We evaluated the performance of our deep 
convolutional network by comparing the segmented areas 
with the manually segmented ones in terms of DM. Let A 
represent the area formed by the automatically segmented 
contour and G represent the area formed by the manually 
segmented contour, then DM can be defined by  
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Figure 1. Layout of the designed deep learning model 
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where GA∩ denotes the intersection area between A 
and G, and GA + denotes the union of A and G. The 
value of DM is always between 0 and 1, with higher 
value indicating better match between the automatically 
segmented area and the corresponding manually 
segmented ones.  

Table.2 The performance of the proposed model on 
Subject#05 from the test set. Due to space constraint, only 
results at every 10 frames are shown here.  

ID DM 
Frame #001 0.81 
Frame #011 0.82 
Frame #021 0.83 
Frame #031 0.83 
Frame #041 0.79 
Frame #051 0.83 
Frame #061 0.71 
Frame #071 0.80 
Frame #081 0.76 
Frame #091 0.80 
Frame #101 0.83 
Frame #111 0.86 
Frame #121 0.83 
Frame #131 0.73 
Frame #141 0.48 
Frame #151 0.64 
Summary 
Average 0.78 
Stdev 0.07 
Min 0.48 
Max 0.86 

3.3.  Testing results 

The trained deep learning model is used to segment the 
LV myocardium on all 154 short-axis frames of Subject 
#05 from the test set. Table 2 lists the DM values at every 
10 frames due to space limitation. The DM values are 
calculated by using Eqn. (1). Note that the summary 
results are based on all 154 frames and not just the frames 
shown in the table. It can be seen that most of the 
segmented results are reasonable since their associated 
DM values are above 0.80. The cases with low DM 
values are due to the partially segmented myocardium 
region. Two examples of segmentation results are shown 
in Figure 2. Overall, the DM value of Subject #05 is 
0.78±0.07. 

Table 3. Evaluation results of trained FCN in terms of 
DM values for all 6 subjects from the test set.  

ID DM 
Subject #05 0.78 
Subject #10 0.68 
Subject #18 0.79 
Subject #22 0.74 
Subject #27 0.72 
Subject #32 0.77 
Summary   
Average 0.75 
Stdev 0.04 
Min 0.68 
Max 0.79 

    The trained deep learning model is further tested on all 
6 subjects in the test set, with a total of 921 frames. The 
segmentation results from our method are compared to 
manually segmented contours by expert cardiologists. 
These ground truths for the segmentation are available on 
the York University website [19]. Table 3 summarizes the 
statistics of the evaluation measures on each of the 6 
subjects. The overall result by the proposed model is 
0.75±0.04, which is promising considering that it is 
purely obtained from a deep learning approach. It is noted 
that our result still has a gap with the best published 
myocardium segmentation result of DM=0.84. This was 
achieved by the state-of-the-art semi-automatic 
segmentation method [20] on the SATCOM 2011 
Challenge Data [21], in which an expert guide was 
employed to improve the segmentation results.    

4. Conclusion

Cardiac image segmentation plays a crucial role and 
allows for a wide range of applications, including 
quantification of volume, computer-aided diagnosis, 
localization of pathology, and image-guided 

Manual segmentation         
                                  

Our segmentation 

DM= 0.65 DM= 0.84 

Input frame     Input frame 
                

Figure 2. Two typical segmentation results: good 
segmentation with DM=0.84 (representing most of test 
frames) and a broken segmentation with DM=0.65 

 

 

  



interventions. We had proposed a framework based on 
deep convolutional neural networks for a fully automatic 
segmentation of the LV myocardium from short-axis 
CMR image sequences. In its current form, the proposed 
one-step deep learning method is unable to match the 
results of the state-of-the-art myocardium segmentation 
methods. Nevertheless, it delivers a promising first-pass 
segmentation results. Moving ahead, we aim to develop a 
hybrid method by fine-tuning the deep neural network, 
augmenting with more training samples, and post-
processing broken myocardium segmentations. 
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