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Abstract 

The spatial QRS-T angle (SA) is a vectorcardiographic 
(VCG) parameter that has been identified as a marker for 
changes in the ventricular depolarization and 
repolarization sequence. The SA is defined as the angle 
subtended by the mean QRS-vector and the mean T-
vector of the VCG.  The SA is typically obtained from 
VCG data that is derived from the resting 12-lead 
electrocardiogram (ECG). Resting 12-lead ECG data is 
commonly recorded using a low-pass filter with a cutoff 
frequency of 150 Hz. The ability of the SA to quantify 
changes in the ventricular depolarization and 
repolarization sequence make the SA potentially 
attractive in a number of different 12-lead ECG 
monitoring applications.  However, the 12-lead ECG data 
that is obtained in such monitoring applications is 
typically recorded using a low-pass filter cutoff frequency 
of 40 Hz. The aim of this research was to quantify the 
differences between the SA computed using 40 Hz low-
pass filtered ECG data (SA40) and the SA computed 
using 150 Hz low-pass filtered ECG data (SA150). We 
assessed the difference between the SA40 and the SA150 
using a study population of 726 subjects.  The differences 
between the SA40 and the SA150 were quantified as 
systematic error (mean difference) and random error 
(span of Bland-Altman 95% limits of agreement). The 
systematic error between the SA40 and the SA150 was 
found to be -0.126° [95% confidence interval: -0.146° to -
0.107°]. The random error was quantified 1.045° [95% 
confidence interval: 0.917° to 1.189°]. The findings of this 
research suggest that it is possible to accurately 
determine the value of the SA when using 40 Hz low-pass 
filtered ECG data. This finding indicates that it is 
possible to record the SA in applications that require the 
utilization of 40 Hz low-pass ECG monitoring filters. 

1. Introduction

The relationship between the ventricular depolarization 
and ventricular repolarization can be quantified using the 

spatial QRS-T angle (SA).  The SA is sensitive to 
changes in the depolarization sequence as well as to 
changes in the action potential duration. The SA is a 
parameter that is computed from the Frank 
vectorcardiogram (VCG) [1].  However, the Frank VCG 
is not typically recorded in modern day clinical practice. 
The SA is therefore frequently determined using 
estimated or derived VCG data.  The derived VCG data is 
typically obtained though the utilization of linear 
electrocardiographic lead transformation matrices that are 
applied to the 12-lead electrocardiogram (ECG).  None of 
the established electrocardiographic lead transformation 
matrices (such as for example the Kors matrix [2] or the 
inverse Dower matrix [3]) has been optimized for the 
derivation of the Frank VCG using monitoring 
compatible electrocardiographic lead sets.  Previous 
research on the utility of the SA was therefore confined to 
clinical applications that are compatible with the 
recording of diagnostic (resting) 12-lead ECG data. 
However, the determination of the SA in monitoring 
applications is of potential clinical interest.  This is 
because the SA can identify an abnormal relationship 
between ventricular depolarization and ventricular 
repolarization.  This is of interest as repolarization and 
depolarization abnormalities are risk factors for the 
development ventricular arrhythmias [4].  Recent efforts 
have focused on overcoming the lead system related 
barriers for the utilization of the SA in monitoring 
applications.  This has lead to the development of 
different linear electrocardiographic lead transformation 
matrices that allow for the derivation of the SA using 
monitoring compatible electrocardiographic lead sets. 
The Guldenring matrix [5-7] for example allows for the 
derivation of the SA from the monitoring compatible 
Mason-Likar (ML) 12-lead ECG [8].  In addition, linear 
electrocardiographic lead transformation matrices, that 
can be used to derive the SA from all 62 different reduced 
lead systems that contain ML limb leads I, II and all 
possible combinations of precordial leads V1 to V6, have 
recently been developed [7].  The recent advances 
in the availability of monitoring compatible 
electrocardiographic lead transformation matrices have 
removed barriers for the utilization of the SA in 

 

Computing in Cardiology 2016; VOL 43 ISSN: 2325-887X  DOI:10.22489/CinC.2016.030-517 

  



monitoring applications. However, monitoring ECGs and 
diagnostic (resting) ECGs do not only require the use of 
different electrocardiographic lead sets they also utilize 
upon different signal filter characteristics.  The American 
Heart Association recommends that diagnostic (resting) 
ECGs should be recorded using signal filters with a 
minimum high-frequency cutoff of 150 Hz [9].  This is 
different to monitoring ECGs where a minimum high-
frequency cutoff of 40 Hz is required [10]. It is known 
that the utilization of the 40 Hz high-frequency cutoff in 
monitoring applications is associated with a reduction of 
QRS amplitudes. Whether ECG monitoring filters do 
have an influence on the value of the SA has, to the best 
of our knowledge, not previously been reported in the 
literature.  The aim of this research is to quantify the 
effect of the 40 Hz high-frequency cutoff, that is used in 
ECG monitoring filters, on the value of the SA. 

2. Material and methods

2.1. Study population 

We base our research on a study population of 726 
subjects.  The study population is composed of 229 
normal subjects, 265 subjects with myocardial infarction 
and 232 subjects with left ventricular hypertrophy. 

2.2. BSPM data 

One body surface potential map (BSPM) was recorded 
for each of the 726 subjects in the study population. Each 
BSPM used in this research contains electrocardiographic 
data of 120 BSPM leads.  A representative average P-
QRST complex was calculated for each of the 120 BSPM 
leads.  Three of the 120 leads were recorded from 
electrodes placed on the right and left wrist and the left 
ankle (VR, VL and VF respectively).  Electrodes situated 
at 81 anterior and 36 posterior locations were used to 
record 117 thoracic leads.  All thoracic leads were 
recorded with reference to the Wilson central terminal.  A 
comprehensive description of the BSPM data and the 
recording procedure can be found in [11]. 

2.3. Extraction of the Frank VCG data 

One Frank VCG was extracted from each of the 726 
BSPMs.  However, some of the body surface potentials 
that are used by the Frank VCG were associated with 
electrode locations that were not covered by the thoracic 
electrode grid. A previously reported two-step 
interpolation procedure [12] was used to obtain the 
required body surface potentials that were not directly 
recorded by the thoracic electrode grid.   

First, a Laplacian 3D interpolation procedure was 
applied to the 117 recorded thoracic leads.  This was 

performed to obtain the body surface potentials at the 
locations of the 352 Dalhousie torso [13] nodes.  Second, 
linear interpolation was used to obtain all required 
thoracic body surface potentials that were located 
between the Dalhousie torso node.  The body surface 
potentials at the A, C, E, F, H, I and M electrode locations 
of the Frank lead system were extracted from the 
interpolated BSPM data and subsequently used to derive 
the Frank VCGs.  

2.4. Low-pass filtering of the Frank VCG 

Two low-pass filtered versions of each Frank VCG 
were generated.  This was achieved by applying one 40 
Hz and one 150 Hz low-pass filter to each lead of the 726 
Frank VCGs.  We subsequently utilize  𝑽𝑽𝑽𝑽𝑽𝑽𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 and 
𝑽𝑽𝑽𝑽𝑽𝑽𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 to refer to 40 Hz low-pass filtered and 150 Hz 
low-pass filtered Frank VCGs respectively.  The filtered 
Frank VCGs were generated using 6th order Butterworth 
infinite impulse response (IIR) digital low-pass filters 
with corner frequencies located at 40 Hz and 150 Hz. 
The non-linear phase responses of the low-pass filters 
were approximately linearized in order to avoid filter 
artifacts.  Phase-linearization was performed by cascading 
one group-delay equalizer with each of the two low-pass 
filters.  The group-delay equalizers were implemented as 
IIR allpass filters and designed using the method 
described in [14]. The group-delay characteristics of the 
cascaded filter structure (low-pass filter in series with the 
group-delay equalizer) were quantified as passband 
average group-delay (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎) and passband group-delay 
deviation (𝜏𝜏𝑑𝑑) using (1) and (2) respectively.   

𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

2
. (1) 

𝜏𝜏𝑑𝑑 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 . (2) 

Where 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 refers to the passband average group-delay, 
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  is the maximal group-delay in the filter passband, 
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  is the minimal group-delay in the filter passband and 
𝜏𝜏𝑑𝑑 refers to the passband group-delay deviation.   

Both, the passband average group-delay as well as the 
passband group-delay deviation of the phase-linearized 
low-pass filters are detailed in Table 1. 

Table 1. Passband average group-delay and passband 
group-delay deviation of the phase-linearized 40 Hz and 
150 Hz low-pass filters. 

Filter type 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 [samples] 𝜏𝜏𝑑𝑑 [samples] 

40 Hz 17.73 0.90 

150 Hz 10.90 0.29 

 

 

  



2.5. Determination of the SA 

The SA values were calculated using the low-pass 
filtered Frank VCGs as detailed in (3) to (8). 

𝑸𝑸𝑸𝑸𝑸𝑸 
𝒅𝒅 = 1

𝐽𝐽𝑝𝑝−𝑄𝑄𝑄𝑄𝑄𝑄𝑂𝑂𝑂𝑂
∑ 𝑽𝑽𝑽𝑽𝑽𝑽𝒅𝒅(𝑛𝑛)𝐽𝐽𝑃𝑃
𝑛𝑛=𝑄𝑄𝑄𝑄𝑄𝑄𝑂𝑂𝑂𝑂 . (3) 

𝑻𝑻 
𝒅𝒅 = 1

𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸−𝐽𝐽𝑃𝑃
∑ 𝑽𝑽𝑽𝑽𝑽𝑽𝒅𝒅(𝑛𝑛)𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛=𝐽𝐽𝑃𝑃 . (4) 

𝑆𝑆𝑆𝑆40 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑸𝑸𝑸𝑸𝑸𝑸 
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒∙𝑻𝑻 

𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

�𝑸𝑸𝑸𝑸𝑸𝑸 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒�∙�𝑻𝑻 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒�
�. (5) 

𝑆𝑆𝑆𝑆150 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑸𝑸𝑸𝑸𝑸𝑸 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏∙𝑻𝑻 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

�𝑸𝑸𝑸𝑸𝑸𝑸 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏�∙�𝑻𝑻 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏�
�. (6) 

𝑆𝑆𝑆𝑆40𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑸𝑸𝑸𝑸𝑸𝑸 
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒∙𝑻𝑻 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

�𝑸𝑸𝑸𝑸𝑸𝑸 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒�∙�𝑻𝑻 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏�
�. (7) 

𝑆𝑆𝑆𝑆40𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑸𝑸𝑸𝑸𝑸𝑸 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏∙𝑻𝑻 

𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

�𝑸𝑸𝑸𝑸𝑸𝑸 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏�∙�𝑻𝑻 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒�
�. (8) 

Where 𝑸𝑸𝑸𝑸𝑸𝑸 
𝒅𝒅 is the 3 × 1 mean vector of ventricular 

depolarization, 𝑻𝑻 
𝒅𝒅 denotes the 3 × 1 mean vector of 

ventricular repolarization, 𝑄𝑄𝑄𝑄𝑄𝑄𝑂𝑂𝑂𝑂 is the sample index of 
the QRS onset, 𝐽𝐽𝑃𝑃 denotes the sample index of the J-point, 
𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸  is the sample index associated with the end of the T 
wave, 𝑽𝑽𝑽𝑽𝑽𝑽𝑑𝑑 is a 3× 𝑁𝑁 matrix containing 𝑁𝑁 sample 
values of the three filtered Frank VCG leads, 𝑑𝑑 ∈
{40 𝐻𝐻𝐻𝐻, 150 𝐻𝐻𝐻𝐻} denotes whether a parameter was 
calculated based upon 40 Hz or 150 Hz low-pass filtered 
Frank VCGs, 𝑆𝑆𝑆𝑆40 and 𝑆𝑆𝑆𝑆150 refer to SA values that 
are determined using 40 Hz and 150 Hz low-pass filtered 
Frank VCGs respectively, 𝑆𝑆𝑆𝑆40𝑄𝑄𝑄𝑄𝑄𝑄 denotes a SA value 
that is calculated using the mean QRS-vector and the 
mean T-vector obtained from 40 Hz and 150 Hz low-pass 
filtered Frank VCGs respectively, 𝑆𝑆𝑆𝑆40𝑇𝑇 denotes a SA 
value that is calculated using the mean QRS-vector and 
the mean T-vector obtained from 150 Hz and 40 Hz low-
pass filtered Frank VCGs respectively. 

2.6. Quantification of the effect of 40 Hz 
low-pass filtering on the SA 

The effect of the 40 Hz low-pass filter on the value of 
the SA was quantified.  This was performed using a 
multistep procedure.  First, the differences between the 
𝑆𝑆𝑆𝑆40 values and the 𝑆𝑆𝑆𝑆150 values were calculated as 
detailed in (9). 

∆𝑺𝑺𝑺𝑺 = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. (9) 

Where 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 and 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 are vectors that contain the 
𝑆𝑆𝑆𝑆40 and the 𝑆𝑆𝑆𝑆150 values of all subjects in the study 
population and ∆𝑺𝑺𝑺𝑺 is a vector that contains the 
differences between the 𝑆𝑆𝑆𝑆40 and the 𝑆𝑆𝑆𝑆150 values of 
all subjects in the study population.   

Second, the systematic and the random error 
component of the differences between the 𝑆𝑆𝑆𝑆40 and the 

𝑆𝑆𝑆𝑆150 values were analyzed.  The systematic error was 
quantified as mean [95% confidence intervals (CI)] of the 
elements in ∆𝑺𝑺𝑺𝑺.  We quantified the random error using 
the span of the Bland-Altman 95% limits of agreement as 
detailed in (10).   

RandomError = 2 ∙ 1.96 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑺𝑺𝑺𝑺). (10) 

Where 𝑠𝑠𝑠𝑠𝑠𝑠(∙) denotes the standard deviation and ∆𝑺𝑺𝑺𝑺 
is as defined in (9). 

Third, the contribution of the 40 Hz low-pass filter 
related changes in the mean QRS-vector and the 40 Hz 
low-pass filter related changes of the mean T-vector to 
the ∆𝑆𝑆𝑆𝑆 values was assessed.  This was performed 
through the use of the linear model in (11). 

∆𝑆𝑆𝑆𝑆� = 𝑏𝑏1 ∙ ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 +  𝑏𝑏2 ∙ ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻 . (11) 

∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = (𝑆𝑆𝑆𝑆40𝑄𝑄𝑄𝑄𝑄𝑄 − 𝑆𝑆𝑆𝑆150). (11a) 

∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻 = (𝑆𝑆𝑆𝑆40𝑇𝑇 − 𝑆𝑆𝑆𝑆150). (11b) 

Where 𝑏𝑏1 and 𝑏𝑏2 are the coefficients of the linear 
model, 𝑆𝑆𝑆𝑆150 and 𝑆𝑆𝑆𝑆40𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑆𝑆𝑆𝑆40𝑇𝑇 are as defined 
in (6) to (8) respectively, ∆𝑆𝑆𝑆𝑆�  is an estimate of the 
∆𝑆𝑆𝑆𝑆 value associated with one subject in the study 
population, ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 denotes the contribution of the 
40 Hz low-pass filter related changes in the mean QRS-
vector to the ∆𝑆𝑆𝑆𝑆 value and ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻 denotes the 
contribution of the 40 Hz low-pass filter related changes 
in the mean T-vector to the ∆𝑆𝑆𝑆𝑆 value. 

Random sampling was used to divide the study 
population into a training dataset (DTrain) and a testing 
dataset (DTest).  The coefficients in (12) were developed 
using the Frank VCGs of the 242 subjects in DTrain and 
linear least squares regression.  The performance of the 
linear model in (11) was assessed using the Frank VCGs 
of the 484 subjects in DTest.  The performance of the 
linear model in (11) was quantified by the Pearson 
product-moment correlation coefficient and the Root-
Mean-Square Difference (RMSD) between the ∆𝑆𝑆𝑆𝑆�  and 
the ∆𝑆𝑆𝑆𝑆 values of all subjects in DTest.  We used the 
mean absolute magnitude to quantify the scale of the 
predictor Variables ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻. 

3. Results

The analysis of the values in ∆𝐒𝐒𝐒𝐒 found that the 
utilization of the 40 Hz high-frequency cutoff that is used 
in ECG monitoring filters is associated with a systematic 
error of -0.126° [95% CI: -0.146° to -0.107°].  In 
addition, the 40 Hz high-frequency cutoff was found to be 
associated with a random error component of 1.045° 
[95% CI: 0.917° to 1.189°].  Using least squares linear 
regression analysis the coefficients in (12) were found to 
be 𝑏𝑏1= 1.081 [95% CI: 1.048 to 1.114] and 𝑏𝑏2= 1.065 

 

 

  



[95% CI: 1.001 to 1.121].  The Pearson product-moment 
correlation coefficient between the ∆𝑆𝑆𝑆𝑆�  and the ∆𝑆𝑆𝑆𝑆 
values of all subjects in DTest was found to be 0.961 
[95% CI: 0.954 to 0.968] and the RMSD between the 
∆𝑆𝑆𝑆𝑆�  and the ∆𝑆𝑆𝑆𝑆 values of all subjects in DTest was 
determines as 0.095° [95% CI: 0.067° to 0.130°].  The 
mean absolute magnitudes of the ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 values and 
the 𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻 values of all subjects in DTest were found to 
be 0.192° and 0.094° respectively. 

4. Discussion

The random error component that is introduced 
through the utilization of a 40 Hz low-pass ECG 
monitoring filter was found to be 1.045° [95% CI: 0.917° 
to 1.189°]. The derivation of the SA from the 12-lead 
ECG has been reported to be associated with random 
error magnitudes of the order of 40° to 55° [7, 15].  This 
is substantially higher than what is introduced through the 
utilization of the 40 Hz low-pass ECG monitoring filter. 
Given the relatively small influence of the 40 Hz low-
pass ECG monitoring filter on the SA, it is clear that 
𝑆𝑆𝑆𝑆40 values can, from a clinical perspective, be regarded 
as equivalent substitutes for 𝑆𝑆𝑆𝑆150 values. 

From the coefficient values of the linear model in (11) 
(𝑏𝑏1= 1.081; 𝑏𝑏2= 1.065) and the differences in the scale of 
the predictor variables (mean absolute magnitudes of the 
∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 values, 0.192°; mean absolute magnitudes of 
the ∆𝑆𝑆𝑆𝑆40𝐻𝐻𝐻𝐻𝐻𝐻 values, 0.094°), one can identify the 40 Hz 
low-pass filter related changes to the mean QRS-vector as 
the largest contributor to the ∆𝑆𝑆𝑆𝑆 . 

5. Conclusion

This paper reported on the effects of the 40 Hz low-
pass ECG monitoring filter on the SA.  The 40 Hz low-
pass ECG monitoring filter was found to introduce only 
minor changes to the SA.  This finding suggests that it is 
possible to record the SA in applications that require the 
utilization of 40 Hz low-pass ECG monitoring filters. 
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