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Abstract 

Objectives: We aimed to evaluate the non-invasive phase 
mapping methods used in clinical practice on atrial 
signals during atrial fibrillation (AF). Methods: A 
modified Courtemanche human atrial ionic model was 
used to run AF simulations. Extracellular potentials on 
the epicardium were computed and propagated to the 
body surface through a homogeneous torso conductor 
using the Boundary Element Method. The obtained body 
surface potentials were sampled in 252 different locations 
to replicate clinical recordings. The clinical non-invasive 
AF mapping workflow was then applied to this body 
surface data to reconstruct atrial epicardial potentials 
and corresponding phase signals. Results: The AF cycle 
lengths were well estimated for the two datasets (mean 
relative error magnitude MRE=5.4% and 3.8% for the 
two simulation sequences with no noise). Results were 
maintained when up to 10 dB of signal noise on the body 
surface recordings or 7.5+/-3.4mm geometrical noise on 
the electrode locations were added. The phase locking 
values (PLV) were 0.62 and 0.78 respectively for the two 
simulation sequences, indicating a fair correlation 
between the phase signals. Regions showing reentries 
were correctly localized. Reconstructed phase singularity 
positions were insensitive to added electrical and 
geometrical noise.  

1. Introduction

Recent developments in body surface mapping and 
computer processing have allowed non-invasive mapping 
of atrial activation during cardiac arrhythmias with 
increasingly finer resolution. We developed a non-
invasive atrial fibrillation (AF) mapping workflow that 
combines Electrocardiographic Imaging (ECGi) and 
phase mapping to localize reentry and focal activation 
during on-going AF. While some studies have shown the 

efficiency of the method in clinical practice [1-3], it 
remains challenging to determine the quantitative 
accuracy of such an approach, as validation data have so 
far been inaccessible in human and animal models. 
Conversely, some recent studies have compared phase 
mapping in atria to other mapping techniques and have 
identified certain limitations [4-6]. 

Hence, the aim of this study was to evaluate the 
accuracy of the features that are used to guide AF ablation 
in clinical practice. To achieve this goal, we used 
simulated data for which a clear gold standard is 
available. We simulated AF epicardial data with a 
realistic atrial ionic model. The computed signals were 
then propagated to the torso to obtain body surface 
potential maps from 252 simulated recording locations. 
Our non-invasive AF mapping workflow that includes the 
inverse computation of electrical potentials and 
corresponding phase followed by feature extraction was 
applied to each simulated dataset. Feature values were 
compared to those obtained directly from the 
transmembrane potentials.  

2. Methods

2.1. Computer model of AF 

Computational model of the heart 
A finite element bilayer model of the atria composed 

of 360K nodes and incorporating fibre orientation was 
constructed. Transmembrane ionic activity was modeled 
using the Courtemanche human atrial myocyte model. 
Fibrosis was added to the model using late gadolinium 
enhanced MRI data from patient MRI. Pixel intensity was 
normalized and then used as a probability for assigning 
scar properties to mesh nodes under corresponding pixels. 
Scar nodes were considered nonconductive and simply 
removed from the mesh. Computations were performed 
on both the fibrotic/structurally diseased model (AFSD) 
as well as the original non-fibrotic (AFnSD) version. 
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Reentry was initiated by a S1S2 protocol. 

Torso Potentials 
To compute torso potentials, a quasi-static boundary 

element formulation was used with a zero-flux constraint 
on the torso surface. The torso geometry was described 
by 9800 triangular boundary elements with between-node 
linear interpolation. Free space potentials were computed 
on the torso surface using atrial transmembrane currents, 
and the surface potentials solved using singular value 
decomposition. The torso model used in this study was a 
homogenous torso, with no blood in the chambers and no 
ventricles.  

Numerical scheme for adding noise in the data 
Two noisy sequences were derived from each 

simulated sequence (AFSD and AFnSD): one (EE) with 
10dB of white noise added to the body surface potentials, 
and one (PN) with non correlated noise on each body 
surface electrode positions (mean: 7.5+/-3.4mm).  

Figure 1: Study workflow. Simulated data are 
generated from an atrial model producing transmembrane 
potentials and body surface ECGs. Each feature is 
computed 1) directly on the transmembrane potentials 
(gold standard), and 2) on the reconstructed epicardial 
signals after inverse computation. 

2.2.  Non-invasive AF mapping 

The Method of Fundamental Solutions (MFS) was 
used to solve the inverse problem and compute epicardial 
potentials [7]. Briefly, the electrical activity of the heart is 
assumed to propagate homogenously through the torso 
considered as a passive medium. The forward transfer 
matrix that links the heart sources to 252 measuring 
electrodes on the body surface is obtained via the 
fundamental solution of the Laplace’s equation expressed 
between virtual sources around the heart and torso and 
with the boundary conditions on the body surface. Being 
a meshless method, the MFS method has a reduced 
computational workload and mesh production time 
compared to other tradition methods. The transfer matrix 
is ill-conditioned, yielding a noise-sensitive inverse 

solution. For this reason, a standard L2 optimization 
process with a Tikhonov regularization was used to 
compute the MFS coefficients. Regularization parameter 
value was computed using the composite residual and 
smoothing operator (CRESO) method [8].  

2.3. Features for atrial fibrillation 

Feature Preprocessing 

In human AF, atrial myocytes depolarize every 120 to 
250ms. This AF cycle length (AFCL) may vary from one 
atrium to the other or within a given chamber. Non-
invasively reconstructed electrograms (rEGM) are 
sensitive to electrical noise, hence a non-recursive band 
pass frequency filter between 4-8Hz (i.e. with linear 
phase) was applied to all atrial signals to enhance the 
frequencies of interest. 

Phase Signals, and Singularity Maps 

Phase signals were computed using the Hilbert 
transform on the filtered rEGM. Phase maps were derived 
from the phase signals by plotting the instantaneous phase 
values on the atria geometry. Instantaneous Phase 
Singularities (PS) were defined as locations in the phase 
maps around which phase values spanned between –� 
and �. This specific fingerprint has been demonstrated to 
correspond to reentrant patterns of the activation 
wavefront [9]. The standard approach to detect SP at node 
Xj is to compute an integral over a close loop CX around 
this point. In our study, the discrete form of the integral 
was approximated by the sum around the nodes Xj in the 
atrial mesh:  

Where �Xi is the phase value of node Xi. Hence, a phase 
singularity is present in Xj if the value of SXj equals ±2π.  
Phase singularity maps were then obtained by averaging 
the values of SX over time: 

where T is the duration of the AF episode. 

2.4.  Data analysis 

AFCL, Phase Signals and Phase Singularity Maps 
were computed over 6 simulated sequences. Three on the 
non-structural diseased model (AFnSD): no noise, with 
10db of electrical noise and with electrode position error; 
and three on the structural diseased model (AFSD).  Each 
simulation led to 1) the transmembrane potentials that 
served as a gold standard and 2) the rEGMs that 
corresponded to the output of the inverse problem (Figure 
1). 

 

 

  



The accuracy of the AFCL maps was quantified by 
measuring the magnitude of the relative error for each 
node and was reported as the average value over all 
nodes.  

where N is the number of nodes in the atrial mesh, 

(resp. ) is the mean AFCL measured on the 
reconstructed phase signal at node Xi (resp. on the 
transmembrane potentials). 

The accuracy of the phase signals for each node was 
quantified using the Phase Locking Value [10]. This 
index estimates the synchronicity between two signals 
whatever the constant phase shift between them, it was 
defined for the node Xi as:  

where  is the difference between the gold 

standard value of the phase and the phase computed on 
the rEGM for node Xi at time t. PLV equals 1 when the 
two signals differ in phase only by a constant, and equals 
0 if they are non-correlated.  

The correspondence between the phase singularity 
maps was quantified using the Correlation Coefficient 
(CC), where �S is the spatial average of S.: 

3. Results

3.1.  AF cycle length 

Table 1, column 1 shows the correspondence between 
the AFCLs, indicating a good accuracy across all the 
simulated sequences. Errors slightly increased with noise 
but not substantially. Figure 2 shows the distribution of 
the AFCL error for AFnSD-NN. Mean relative errors are 
substantially smaller in the left atrium compared to the 
right atrium. This difference is observed across all 
simulated sequences. 

3.2.  Phase locking values 

Table 1, columns 2 shows the Phase Locking Values 
for each simulated sequence. Overall synchronization of 
the phase signals computed from the body surface data 
and gold standard potentials was satisfactory. The spatial 
distribution of the PLV over the 6 simulated sequences is 
presented in Figures 3. It indicates that the phase signals 

are better reconstructed in the left atria and lateral right 
atrial wall compared to the coronary sinus ostium.  

Table 1. Errors in AFCLs, and Phase Locking Values  

�r (ms) 
[1st-3rd quartile] 

PLV 

Normal Heart (AFnSD) 
No noise (NN) 6.13  [1.9-18.0] 0.69 [0.45-0.87] 

10db Electrical noise (EN) 6.18  [1.9-18.0] 0.69 [0.44-0.87] 
Electrode position noise (PN) 6.00  [2.0-18.5] 0.67 [0.53-0.86] 

Structurally diseased Heart (AFSD) 
No noise (NN) 4.48  [2.1-9.2] 0.77 [0.61-0.88] 

10db Electrical noise (EN) 4.58  [2.0-9.2] 0.77 [0.60-0.87] 
Electrode position noise (PN) 5.00  [2.2-10.4] 0.77 [0.58-0.87] 

Figure 2: Error magnitude in AF Cycle Length. Results 
are better in the Left Atria compare to the Right Atria 

Figure 3: Spatial distribution of the Phase Locking Values 
for the 6 simulated sequences  

3.3.  Singularity maps 

The CC between the computed singularity maps and 
the reference maps are poor (AFnSHD:  No noise: 
0.11(0.27), EE: 0.09, PN 0.06; AFSHD:  No noise: 0.27, 
EE: 0.25, PN 0.22) (Figure 3); CCs decrease when noise 
is added to the input signal or the electrode positions. 
Figure 4 shows the SP maps for the AFSHD sequence. 
The upper panel corresponds to the map computed 
directly from the transmembrane potentials (gold 
standard) and the lower panel to the one obtained when 
electrode position error is added in the sequence. ‘Hot 
spot’ locations (posterior left inferior pulmonary vein, 

 

 

  



and anterior left atrium) are well identified. We notice a 
false positive in the nearby anterior right septum.   

Figure 4: Singularity maps (A) computed on the 
transmembrane potentials (gold standard); and (B) on the 
reconstructed signals (rEGM). The CC between these two 
maps is also indicated.    

4. Discussion

The spatial distribution of the AF cycle length and the 
The spatial distribution of AF cycle length and the 
location of phase singularities are useful features to target 
ablation. We showed in this study that these can be 
estimated using a combined approach of ECGi and phase 
mapping. However, the poor values of CCs between 
singularity maps indicate that this workflow is not 
appropriate to describe the precise activity of the 
wavefronts but only a surrogate of such activities. 
Although such CC are rigorous quantitative 
measurements of reconstruction accuracy; coarser 
information about singularity point locations is usually 
sufficient in clinical practice to guide the ablation 
strategy.  

Results are better in the left atrium compared to the 
right atrium. Septal and posterior portions of the right 
atrium were especially error-prone in our simulations. 
This is due to a poor reconstruction of the epicardial 
signals at these locations. Reasons for this poor 
reconstruction may be due to the septum being deeply 
inserted in-between the two chambers, and the lateral 
right atrium being covered by the right pulmonary veins. 
These findings are consistent with previous clinical work 
findings are consistent with previous clinical work [2]. 

The main limitation of our study was the use of a 
homogeneous model for both the forward propagation 
and the inverse problem. However, a different 
formulation of the forward model was used for the 
simulation of body surface potentials (BEM) and the 

inverse problem (MFS), in addition to noise being added 
to the data.  
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