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Abstract

Uncertainty in the input parameters used in simulation
studies needs to be taken into account when evaluating the
results produced. This work considers the effect of using
various sets of bidomain conductivity values in two simu-
lations: firstly, activation times, which indicate the propa-
gation of the depolarisation wavefront through the cardiac
tissue, and, secondly, the determination of defibrillation
thresholds in a ‘heart in a bath’ model, where a shock is
delivered from two opposing patch electrodes. Both sim-
ulations use the same two types of sets of bidomain con-
ductivity values: four-conductivity datasets (where normal
and transverse conductivities are assumed equal) and six-
conductivity datasets, including newly proposed sets that
are based on experimental measurements.

The activation time maps show significant differences
depending on the conductivity set used, as do the defib-
rillation thresholds. The defibrillation thresholds vary by
more than 20%, whereas the activation times for epicardial
breakthrough and total depolarisation both vary by ap-
proximately 50%. It is found that the most extreme values
in each case are produced by two of the four-conductivity
datasets. Since these differences are large enough to lead
to different conclusions in such studies, it is suggested that
the four-conductivity datasets may not be an appropriate
choice for use in simulation studies in the heart.

1. Introduction

Since electrophysiological simulations are used to in-
crease understanding of aspects of cardiac electrophysiol-
ogy that are not amenable to experimental study, it is worth
considering the effect uncertainty in the input parameters
may have on the results of such simulations. Studies that
model the electric field in cardiac tissue, which consists of
‘sheets’ of cardiac fibres, normally use the bidomain model
[1]. This continuum model regards tissue as consisting of
two interpenetrating domains: intracellular (i), the space
within the cardiac cells, and extracellular (e), the space
outside the cells, but within the tissue. The two spaces

Table 1. Conductivity data (in mS cm−1) from the indi-
cated studies. Dashes in the table indicate that the values
do not exist. Here α = gil/gel.

Study gel get gen gil git gin
Clerc [12] 6.3 2.4 – 1.7 0.19 –
Roberts et al. [13] 2.2 1.3 – 2.8 0.26 –
Roberts and Scher [14] 1.2 0.8 – 3.4 0.6 –
MacLachlan et al. [6] 2.0 1.7 1.4 3.0 1.0 0.32
Hooks et al. [5] 2.6 2.5 1.1 2.6 0.26 0.08
Johnston (α = 1) [10] 2.4 2.0 1.1 2.4 0.35 0.08
Johnston (α = 0.6) [10] 3.2 2.2 1.2 1.9 0.35 0.08
Johnston (α = 1.6) [10] 2.0 2.2 1.2 3.1 0.35 0.08

are separated everywhere by the cell membrane. The elec-
tric current is able to travel in three mutually orthogonal
directions: longitudinal (l); transverse (t), and normal (n),
where the current is travelling along the cardiac fibres, per-
pendicular to the fibres within the sheet and perpendicu-
lar to the sheet, respectively. This results in six bidomain
model conductivities, gpq (p = i, e and q = l, t, n).

Due to the considerable experimental and computational
challenges associated with determining these conductivi-
ties [2], at present no experimentally determined sets of
all six conductivities are available. More than thirty years
ago, three sets of four conductivity values gpq (p = i, e
and q = l, t) were found using different experimental set–
ups and models (Table 1, rows 1–3). These values vary
considerably, and to be used in modelling studies the as-
sumption must be made that the normal conductivities are
equal to the transverse conductivities. It has been shown
that, in simulation studies modelling partial thickness is-
chaemia, these sets produce very different results from one
another [3, 4] and from the two (non–experimental) six–
conductivity datasets [5, 6] given in the literature (Table 1,
rows 4 and 5) [7].

2. Sets of Bidomain Conductivity Values

In addition, recent experimental studies [8] have shown
that cardiac tissue is orthotropic, contrary to the n = t
assumption. The results of these studies, one of which [9]
determined conduction velocities in each direction, and the
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other [5], which determined bulk (intra– plus extracellu-
lar) conductivities, have been used [10] recently to propose
new six conductivity datasets (Table 1, last three rows).
These sets depend on the parameter α = gil/gel, which is
often taken to be 1. It is, however, not known and has been
measured in the range 0.3–1.2 [11].

This paper considers the effect of using the various
datasets described above (Table 1) in simulations that de-
termine activation times and defibrillation voltages in mod-
els using a realistic canine geometry.

2.1. Normalised conductivities

Recently, it was shown [10] that it is possible to use the
results of two experimental studies [5,9] to produce a set of
normalised conductivity values. The studies showed that
conduction velocities (cq, q = l, t, n) divide approximately
in the ratio cl : ct : cn = 4 : 2 : 1 [9] and so too do the
bulk conductivities (gq = giq + geq, q = l, t, n), that is,
gl : gt : gn = 4 : 2 : 1 [5]. Assuming these are exact
means that gl/gt = 2 and cl/ct = λl/λt, and gt/gn = 2
and ct/cn = λt/λn (λq=space constant), which implies
that [10]

gilgel
gitget

= 8 and
gitget
gingen

= 8. (1)

If the conductivities are then normalised with respect to
git (indicated with a prime), for example g′et = get/git, it
is then possible to substitute in the above relationships for
the bulk conductivities using equation (1) and determine
a set of formulae [10] for the normalised conductivities,
that depends only on α = gil

gel
=

g′il
g′el

. The set is, where

β = α+ 1 +
√
α2 + 1 and γ = α+ 1 +

√
α2 + α+ 1:

g′il = 2β, g′el =
2β

α
, g′it = 1, g′et =

(
α+1
α

)
β − 1,

g′in = β
4γ , g

′
en = βγ

4α (2)

2.2. Six conductivity datasets

One suggested [10] approach to produce actual sets of
conductivities from these normalised conductivities is to
set git = 0.35, the average of the experimentally deter-
mined four–conductivity datasets (rows 1–3 in Table 1).
In this case, setting α across a wide range (here α =
0.6, 1, 1.6) leads to the six–conductivity datasets given in
the last three rows of Table 1.

It would, of course, be possible to use other values to
scale the normalised dataset. For example, another ap-
proach might be to start with the bulk conductivity val-
ues (in mS/cm) found by Hooks et al. [5] (gl = 7, gt =
3.5, gn = 1.6 mS/cm). If this is combined with the
fact, shown in Johnston [10], that the various transverse
to normal conductivity ratios are quite consistent across a

Figure 1. ‘Heart in a bath’ model, with blue lines for
outside of bath, green discs for defibrillation paddles.

range of α values (that is, gen/gin ≈ 14, get/git ≈ 6,
get/gen ≈ 2), then (for α = 1 and taking exact values for
the ratios), the following dataset (in mS/cm) is obtained:
gel = 3.5, get = 3, gen = 1.5, gil = 3.5, git = 0.5, gin = 0.11.
However, a comparison of these values with those in Ta-
ble 1 shows that these are higher than all but three of the
values in the table, so this dataset will not be used.

3. Governing equations and models

Two versions of the bidomain equations [1] will be used
in this work: the passive bidomain model (in the defibril-
lation model); and the active (transient) bidomain model,
for producing activation time maps.

Passive bidomain equations

∇ ·Mi∇φi = β
Rm

φm (3)

∇ ·Me∇φe = − β
Rm

φm (4)

∴ ∇ · (Mi + Me)∇φe = −∇ ·Mi∇φm (5)

where φa is the extracellular (a = e) or intracellular
(a = i) potential in cardiac tissue, φm = φi − φe is
the transmembrane potential, β is the surface to volume
ratio and Rm is the membrane resistance. Here Ma(x)
(a = i, e) is a conductivity tensor, which allows for fibre
rotation through the tissue [15].

Active bidomain equation

Substituting φi = φm+φe in equation (3), and including
a time–varying transmembrane current, gives

∇ ·Mi∇φe +∇ ·Mi∇φm = β

(
Cm

∂φm
∂t

+ Iion

)
(6)

 

 

  



where t is time, Cm is the membrane capacitance and Iion
is the ionic current density, determined, in this study, by
the ten Tusscher and Panfilov [16] cell model.

3.1. A simple defibrillation model

A simple model for defibrillation of the heart can be cre-
ated by considering a heart situated in a fluid bath with
electrode paddles attached to opposite sides of the bath,
as shown in Figure 1. The heart has a realistic canine ge-
ometry, obtained from MRI data, and includes realistic fi-
bre orientation taken from diffusion weighted images [17].
The bath and ventricles are filled with a fluid having the
same electrical properties as blood.

Equation (5), along with Laplace’s equation for the po-
tential in the blood φb,

∇2φb = 0 (7)

is solved using the finite element method as implemented
in SCIRun [17], with an additional mass matrix module
developed by P. Johnston. The mesh contains 139,403
nodes joined by 820,244 tetrahedral elements. The bound-
ary conditions are: that the outside of the bath, apart from
the electrodes, is insulated, and there is continuity of po-
tential and current, in the extracellular space, between the
tissue and the bath. The two electrodes are set at fixed po-
tentials, one of which is zero.

The various six–conductivity sets used in Sections 3.1
and 3.2 are given in Table 1. For the four–conductivity
datasets it is assumed that the normal and transverse con-
ductivities are equal. The parameters used to solve equa-
tions (5) and/or (6) are: gb = 6.7 mS/cm, β = 2000 cm−1,
Rm = 9100Ω cm2 and Cm = 2µ F/cm2.

3.2. Activation time maps

The heart geometry for these simulations is the same as
that described in the previous section, with the ventricles
full of blood, except that the heart is isolated rather than
being in a bath. The boundary conditions are similar to
those in the previous section, except the epicardium is in-
sulated and a stimulating current is applied at the apex of
the endocardium at time t = 0. The model is solved using
the finite volume method on a mesh with 717,709 nodes
connected by 4,486,917 tetrahedral elements [15]. From
this activation time maps (see Figure 2) were produced.

4. Results and discussion

4.1. Activation times

Firstly, two different types of activation times were pro-
duced using the model (Section 3.2) along with the eight

Figure 2. Cross–section of the heart, showing an activa-
tion time map produced using Clerc’s data.

sets of conductivities listed in Table 1 and using the above
parameters. They were: the time to surface breakthrough,
and the time to complete depolarisation. The results in
Table 2 (columns 2 and 3) show that the activation times
depend on the conductivity set used in the simulation. As
would be expected, there is a strong correlation (r2=0.99)
between the time to surface breakthrough and the time
to complete depolarisation. For both types of activation
time there is approximately a 50% difference between the
quickest and slowest times: 30 and 46 ms for surface
breakthrough and 126 and 197 ms for total depolarisation.
In this case MacLachlan [6] and Roberts and Scher [14] are
equally quick and Clerc [12] is the slowest. The remaining
results vary by less than 20%.

4.2. Defibrillation voltages

Next, the ‘heart in a bath’ model (Section 3.1) was
run using the same conductivity sets and parameters. In-
creasing potential differences were applied across the pad-
dles (Figure 1) until the threshold potential difference was
found that met the defibrillation target of at least 90% of
the extracellular tissue having a potential gradient of 6
V/cm.

The results are given in Table 2 (column 4) and again
depend on the conductivity set used. In addition to there
being an approximately 20% difference between the lowest
(173 V) and highest threshold values (209 V), it can also
be seen that the lowest and highest values are produced
by four–conductivity datasets, that is, those of Roberts and
Scher [14] and Clerc [12], respectively. The voltages for
the remaining datasets lie within 5% of one another.

 

 

  



Table 2. Activation times (in ms) and threshold potential
differences (in V), for various conductivity datasets.

Time to Time to Defibrillation
Dataset Surface Complete Threshold

Break– Depolar– Potential
through risation Difference

(ms) (ms) (V)
MacLachlan 30 127 179
Roberts&Scher 31 126 173
Roberts et al. 37 153 180
Hooks 38 165 190
Johnston(α = 1) 39 169 184
Johnston(α = 1.6) 43 188 186
Johnston(α = 0.6) 44 188 188
Clerc 46 197 209

5. Conclusion

This work has demonstrated that, when simulations are
carried out using the bidomain equations to model the elec-
tric potential in cardiac ventricular tissue, both activation
times and defibrillation voltages are significantly affected
by the conductivity values that are used. Although the sim-
ulations presented here use a realistic heart geometry, both
models are simplified in that one is a simple ‘heart in a
bath’ and the other is lacking the Purkinje system, resulting
in slower activation times. However, these are not signifi-
cant limitations as the purpose of this study is to compare
the effect of the input conductivities. The effect is partic-
ularly noticeable for the four–conductivity datasets (Table
1, rows 1–3), as well as that of MacLachlan et al. [6].
Hence, it is suggested that researchers should use one of
the six–conductivity datasets from Table 1 (rows 5–8) in
cardiac electrophysiological simulations that use the bido-
main model.
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