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Abstract

The monodomain model and finite element method are

often used together to compute electrical excitation con-

duction in cardiac tissue. It is known that the choice of

using mass lumping as well as the used ionic current in-

tegration method affect the resulting conduction velocities

(CVs), especially at coarse resolutions. We describe how

the regularity of node arrangement in tetrahedral grids

also affects simulated CVs in a similar magnitude. We

compare activation times (ATs) over a distance of 21.4 mm

at different resolutions to a high resolution reference solu-

tion from a previously published benchmark. We show that

triangulated grids are able to be within 10% of the ref-

erence solution up to a grid resolution of 0.6 mm, while

results from regular grids already diverge by more than

that at 0.4 mm. At 0.7 mm, a regular grid yields an AT of

80.01 ms, where a triangulated grid with less nodes results

in 47.52 ms (reference solution 42.82 ms). We investigate

how gradual perturbation of nodes from a regular grid ef-

fects AT, finding that CV monotonically increases with de-

gree of node perturbation.

1. Introduction

The mono- and bidomain models are used in comput-

ing electrical excitation propagation in cardiac tissue. For

doing so, a partial differential equation is solved on a dis-

cretized domain representing the tissue, hereafter referred

to as grid. Popular methods for discretizing the domain are

the finite differences method (FDM) and the finite element

method (FEM). While the FDM is simple to implement,

discretization of a domain is generally restricted to divid-

ing each spatial dimension with equidistant nodes. The

FEM allows more flexible discretization, dividing the do-

main into elements of different possible shapes, resulting

in more or less unstructured node distributions. The FEM

is therefore especially able to discretize anatomical struc-

tures with less nodes than the FDM, particularly if different

regions of the domain require different resolutions. Us-

ing less nodes (and thus unstructured FEM grids) is often

desirable to reduce computational effort (i.e., computation

time) needed to simulate a particular problem.

A benchmark published in 2011 compared eleven sim-

ulation softwares that are using the monodomain equation

with FDM or FEM [1]. It was found that of the three par-

ticipating FEM solvers, two performed significantly better

at lower resolutions than all FDM solvers. Of these two,

one slightly overestimated conduction velocity (CV) at a

low resolution, while the other one slightly underestimated

it. The third FEM solver and all FDM solvers greatly un-

derestimated CV in that case. The variability among FEM

solvers was in a later publication attributed to the use of

a consistent (vs. lumped) mass matrix, and the used ionic

current integration scheme [2].

During our own studies while implementing an FEM

solver, we found that the node distribution in the discrete

grid also affects the resulting CV in a similar magnitude as

the above mentioned influences. The effects are described,

studied, and quantified in this work.

2. Methods

2.1. The Monodomain Model

The monodomain model is commonly stated as the par-

tial differential equation

∇ · (σ∇Vm) = β

(

Cm

∂Vm

∂t
+ Iion

)

with boundary condition n · (σ∇Vm) = 0 [3]. In

these equations, Vm represents the transmembrane voltage

(TMV), σ is the electrical conductivity tensor, β the cell

surface to volume ratio, and Cm the respective cells’ spe-

cific membrane capacitance per surface area. Iion is the

ionic current density between the intra- and extracellular
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domain. It is usually calculated using mathematical cell

models that require solving a system of coupled ordinary

differential equations. The boundary condition includes

the outward facing normal vector n of the simulation do-

main’s surface, therefore stating that no current leaves or

enters the domain via its surface.

To compute excitation propagation using the mon-

odomain model, the above equation has to be solved for

Vm over time, or (in practice) in a time-stepping manner.

To be able to do so computationally, the spatial domain of

the equation is discretized, resulting in a grid, where values

of Vm are computed for every node.

2.2. The Finite Element Method

The FEM allows spatially discretizing the monodomain

equation by transforming it into a so-called weak formu-

lation and constraining the solution space by reducing the

degrees of freedom to the number of nodes in the grid. Ul-

timately, it poses linear equations only for every combina-

tion of nodes in the grid that are part of the same element.

Combining these equations for all nodes results in a lin-

ear system of equations. It can be stated in matrix-vector

notation as

Kv = βM

(

Cm

∂v

∂t
+ i

)

.

Here, K and M are known as stiffness matrix and mass

matrix, respectively. The vectors v and i contain the

nodal values of the TMV and ionic current density, respec-

tively. Resolving the partial temporal derivative using a

θ-algorithm results in

(

βCm

∆t
M + θK

)

v
t+∆t =

(

βCm

∆t
M − (1− θ)K

)

v
t − βMi

t,

where ∆t is the integration time step and superscript in-

dices denote the specific point in time at which the variable

is evaluated [3].

The results presented below were obtained solving these

linear systems as an initial value problem for v, using the

MINRES iterative solver from the PETSc linear algebra

framework [4]. Systems were preconditioned using the

Eisenstat variant of the SOR method. The vector v was

initialized with the resting membrane voltage of the cell

model. A mathematical cell model is evaluated at each

node and for every time step to populate the vector i.

2.3. Simulation Setup and Evaluation

In order to be able to compare our results as directly as

possible, we used the same simulation setups as in the 2011

benchmark publication by Niederer et al. [1]. Specifically,

the simulation domain was a block of 3 mm by 7 mm by

20 mm. A stimulus current was applied to a volume of

1.5 mm by 1.5 mm by 1.5 mm in one corner. The conduc-

tivity tensor had an anisotropy ratio of approx. 7.58 in long

direction and was constant over the domain.

For our work, the activation time (with a threshold of

0 mV) of the node diagonally opposite the stimulation cor-

ner (i.e., furthest from it) was used as a surrogate measure

for the CV. This node will hereafter be referred to as the

distal node. The benchmark provides a reference solution

for the activation time, 42.82ms, obtained by averaging re-

sults from three solvers at a higher resolution.

2.4. Meshing and Perturbation

For any spatial resolution h investigated, two differ-

ent grids were created for the above mentioned simula-

tion domain. For the first set, regular FEM grids, nodes

were placed equidistantly in x-, y-, and z-direction with

∆x = ∆y = ∆z = h. This grid thus uses the same node

positions as an FDM grid would. Each cubic cell of eight

nodes was deterministically filled with six tetrahedral ele-

ments.

A second set of tetrahedral grids was created by Delau-

nay triangulation using the software Gmsh [5]. The target

resolutions were set to h. It was made sure that the grids

created with Gmsh had a higher average edge length than

the corresponding regular grid, to ensure that better results

are not the result of an accidentally better resolution.

To be able to quantify the effect of irregular node dis-

tribution gradually, additional perturbed grids have been

created from the regular FEM grids. A perturbed grid was

defined by its spatial resolution h and perturbation factor

p. Starting from a uniform node distribution (∆x = ∆y =
∆z = h), every node was moved randomly in x-, y-, and

z-direction within the interval
[

−ph
2
, ph

2

)

defined by a per-

turbation factor p. Nodes on the surface were only moved

in a way such that the surface was not altered.

3. Results

3.1. Grids

Regular and Delaunay-triangulated grids have been cre-

ated using the methods described above for each spatial

resolution h between 0.1 mm and 1 mm in steps of 0.1 mm.

Additionally, perturbed meshes with p between 0.1 and 1

in steps of 0.1 were created. Figure 1 shows exemplary

grids at a resolution of 0.5 mm.

Figure 2 shows that a higher perturbation consistently

leads to higher average edge lengths. Considering that the

number of nodes and cells, and thus the average cell vol-

 

 

  



Figure 1. Upper left sections of surfaces of generated meshes at h = 0.5 mm. A. Regular FEM grid. B. Created using

Gmsh. C, D. Perturbed regular grids (p = 0.3 and p = 0.7, respectively).
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Figure 2. Average edge length of FEM grids depending on

perturbation factor p (solid line) at h = 0.5 mm. Dashed

line shows average edge length of corresponding Gmsh tri-

angulated grid (no perturbation applied).

ume, does not change with perturbation, it is apparent that

the mesh quality worsens with higher perturbation factors.

3.2. Simulation Results

Excitation conduction was simulated on the various

grids according to the benchmark setup. Figure 3 shows

some resulting exemplary TMV distributions. As evident

in figure 4, using an unstructured grid, as resulting from

Gmsh, results in a more consistent CV even with very

coarse resolutions. In fact, up to h = 0.6 mm, the re-

sults are within 10% of the benchmark reference solution

(when also using the consistent mass matrix). Similar to

the effects of using mass lumping, the effect of using a

regular over a triangulated grid is stronger for more coarse

resolutions.

We found that a higher perturbation factor p generally

Figure 3. TMV distributions at t = 20 ms on the surface

of different grids. Red area is activated. A. Gmsh, ∆x =
0.1 mm. B. Gmsh, ∆x = 0.5 mm. C. Regular, ∆x =
0.5 mm. D. Perturbed, ∆x = 0.5 mm, p = 0.5.

leads to faster simulated CVs on the resulting grid. This

effect is more pronounced, the more coarse a grid is. Both

tendencies are illustrated exemplarily in figure 5. Notably,

the results at ∆x = 0.2 mm (where the CV is overesti-

mated in all cases, cf. fig. 4) do not improve towards the

reference solution at all by perturbation.

4. Conclusions

The results show that under certain conditions, very

coarse grids are sufficient to reproduce an excitation pat-

tern, provided the grid nodes are distributed sufficiently

irregular. For coarse resolutions, the contribution of node

regularity to simulated CV is of similar magnitude as the

choice of using mass lumping. Figure 3 shows how the

regular grid apparently imposes a prevalent direction of ex-

citation conduction, thereby distorting the excitation prop-

agation.

The experiments with grid perturbation show, however,

that a more chaotic distribution of nodes does not necessar-
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Figure 4. Activation time of distal node over grid reso-

lutions h. Solid lines: Simulations with consistent mass

matrix. Dashed lines: with mass lumping. Squares mark

regular grid results, circles results on Gmsh grids. Red:

benchmark reference solution (42.82 ms, dashed: ±10%).
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Figure 5. Distal node activation time for two resolutions

over perturbation factor p. Red lines like in fig. 4.

ily lead to better results. Instead, CV will just be faster for

more perturbed grids, even when mesh quality worsens.

5. Limitations and Outlook

Our work focuses solely on the effects of grid regular-

ity on excitation propagation in monodomain FEM simu-

lations. It is to be expected that similar effects will occur

in bidomain simulations. These effects, as well as effects

on electrical field calculations (e.g., for ECG calculations)

should be investigated in future works.

In this work we have only considered FEM grids with

linear tetrahedral elements. It should be investigated

whether similar effects occur using other geometrical el-

ements (e.g., hexahedra), higher order elements, and other

node shape functions (e.g., serendipity elements).

Our results show a correlation between CV and node

perturbation, that is, deviation of the node placement from

regular arraying. In this work, node distribution was

treated the same for every spatial distribution. It is, how-

ever, to be expected that orientation of an anisotropic con-

ductivity tensor modulates the influence of regularity in its

major axis directions. Ultimately, a measure for the node

regularity of an arbitrary FEM grid, possibly considering

the conductivity tensor, should be established to be able to

estimate the magnitude of these effects before simulations.

Even accounting for expected deviations by means of a

mathematical correction might be possible and desired.
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