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Abstract

Left ventricular assist devices (LVADs) can significantly
improve survival rate and quality of life for patients suffer-
ing from end-stage heart failure. Several promising strate-
gies to control LVADs are being developed, some being fo-
cused on the end-diastolic pressure (EDP). For those, the
problem of EDP estimation in real-time has to be solved.
In this work, a deconvolution-based method to identify fea-
tures in cardiac signals is presented. This method is ap-
plied to the estimation of the EDP from the left-ventricular
pressure (LVP) signal and evaluated on animal trial data.
In 11 trials with adult sheep, a myocardial infarction was
induced and an LVAD was implanted. A total of 37.6 hours
of LVP data was annotated by a medical expert. Compared
to the annotations, a root mean square error of 11.6 ms /
4.1 mmHg was achieved using the proposed deconvolution
method.

1. Introduction

According to the American Heart Association, about 5.7
million Americans live with heart failure. For patients
suffering from its end-stage manifestation, left ventricular
assist devices (LVADs) can significantly improve survival
rate and quality of life [1]. For the control of LVADs, sev-
eral strategies exist [2], one promising approach being the
control of the end diastolic pressure (EDP). EDP is defined
as the end-diastolic (ED) value of the left ventricular pres-
sure (LVP). Thus, to implement an EDP control strategy,
its value has to be determined in real time.

In [3], the estimation of the ED time point was ap-
proach by an analysis of the peak curvature of the LVP
signal and evaluated in terms of temporal accuracy. Here,
a deconvolution-based approach is presented and its accu-
racy is evaluated both in temporal as well as amplitudi-
nal accuracy. In previous work we have demonstrated that
deconvolution methods have a great potential in the pro-
cessing of (multimodal) cardiac signals. It was shown in
[4] that blind deconvolution can be used to estimate a vir-
tual source signal and linear filter coefficients to analyze
and represent measured multimodal signals (e.g. photo-
plethysmography and ballistocardiography). In [5] it was
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further shown that a desired, measured signal (e.g. ref-
erence ECG) can be approximated by filtering measured
multichannel signals (e.g. capacitively coupled ECG) with
estimated linear filters. In this work, we expand the con-
cept of blind deconvolution towards the estimation of the
EDP. In particular, a measured signal and a desired, vir-
tual signal are used to estimated linear filter coefficients in
a training phase. These filter coefficients can subsequently
be used to efficiently locate ED time points via convolution
and peak detection.

1.1.  Deconvolution Algorithm

The aim of the proposed algorithm is to find a feature,
namely the ED time point, in the LVP signal. Thus, the
observed signal ¥ = z(t), witht € 0...T — 1, is the LVP
signal, see Figure 1, top graph, solid line. The desired sig-
nal ¢ = y(t) is derived from the temporal location of the
ED time points. In particular, a medical expert has identi-
fied all points in time FEDP that correspond to an EDP, see
Figure 1, top graph, crosses. Now, the desired signal y(t)
is defined as a train of impulses:

- 1 for tGFEDp
y(t) = { 0 otherwise. M

In the next step, the FIR filter coefficients @ =
a(0),...,a(q) have to be identified that transform x(t)
into an estimation of the desired signal,

q

g(t) = a(t) x2(t) = Y alr)z(t—7), ()

7=0

with the convolution operator *. The estimation of @ can
be formulated as a least-squares minimization problem,

2
q
@ = argmin |y(t) — Z a(T)z(t —1)| . 3)
a =0
This problem can be solved efficiently in the Fourier do-

main, where the convolution is represented by a multipli-
cation. Thus, the equation

Y(w) =) a(r)X (w)e /T )

7=0
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Figure 1. The top graph shows a segment of the LVP sig-
nal (z(t), solid line) and annotated EDPs (fEDP, Crosses)
of trial 3. The bottom graph shows the desired virtual sig-
nal (y(t), dashed line) and the estimation reconstructed via
linear filtering (§(t) = a(t) * (t), solid line).

can be rewritten as
Y(w)=d Ew)-X(w) (5)

with the Fourier-domain delay-vector

(6)

with n € 0...q, see also [6]. Let (-)7 be the transpose,
() the Hermitian transpose and (-)* the conjugation op-
erator. Now, the [2-optimal vector of filter coefficients @
can be obtained via

a‘:(?*-MT+?-MH). %)

. . . T
E(w) = E(n,w) = (1,67327“"/T, ...,67]27qu/T)

(M*-MT +M-M7) 7
with the matrix
M = (E(O) - X(0),...,B(T—1)- X(T - 1)) . ®)

From the signal ¢(t), ED time points are determined by
peak detection.

1.2. Experimental Details

The LVP data used in this study was gathered in 11 an-
imal experiments with adult sheep (Ovis aries, Rhon, fe-
male, approx. 63 kg) with experimentally induced myocar-
dial infarction. The LVP was obtained using two differ-
ent sensor systems: A conventional pressure measurement

system utilizing a fluid filled catheter between the LV com-
partment and the sensor unit (Xtrans, CODAN pvb Critical
Care GmbH, Forstinning, Germany, type ’A’ in the follow-
ing) and an experimental optical sensor (type 'B’, employ-
ing the measurement principle introduced in [7]), mounted
on the inlet of a rotary blood pump (Impella CP, Abiomed
Inc., Danvers, USA).

At the beginning of each experiment, the sheep were
put under general anesthesia. Subsequently, a myocar-
dial infarction was triggered by balloon occlusion of the
left anterior descending artery followed by an injection of
microspheres into the occluded vessels. The Impella CP
was implanted directly after the first symptoms of myocar-
dial infarction were noticeable. The study was approved
by the corresponding office at the RWTH Aachen Faculty
of Medicine in accordance with national and international
standards.

To identify the EDP, LVP signals were manually anno-
tated by a medical expert. In the LVP signal, the EDP is
visible as a “corner” or “bend”. Table 1 provides details
about the sensor type, number of EDPs annotated, total
time of annotated signal, mean heart rate as well as mean
and standard deviation (SD) of the EDP.

trial sens.  Mann  tamn HR  EDP4SD
# type [h] [BPM] [mmHg]

1 B 2388 0.8 49 27.2+4.2

2 B 19151 39 83 15.6+6.4

3 B 19726 3.8 87 19.7£6.5

4 B 23166 3.6 106 13.5+5.4

5 B 18535 3.1 99 21.74+8.8

6 B 21615 4.6 79 20.6£6.5

7 B 927 0.2 84 22.14+3.8

8 A 13608 2.4 94 36.8+£9.5

9 A 18156 3.5 87 16.0+9.4

10 A 23630 5.4 73 13.3+6.3

11 A 40983 6.4 107 10.9£10.7

> 201885 376 @ 89 27.2+4.2

Table 1. Details on the 11 animal trials including total

number of annotated EDP, total duration of annotated sig-
nal as well as gross statistics for HR and EDP.

1.3.  Algorithmic Details

Data was recorded at f, = 1kHz and downsampled to
fs = 250Hz for computational reasons. Before decon-
volution, a fourth order Butterworth bandpass filter with a
passband of 0.1 to 10 Hz to filter out the DC component
and noise was applied. To find the peaks in the estimated
desired signal, a basic peak detection algorithm with an
adaptive threshold was implemented. Parameters of the
peak detector were kept constant for all trials.



To assess the performance of the algorithm, cross-
validation was performed. Here, the annotated date of one
animal trial was used to estimate the FIR filter coefficients
a. Using this filter, the EPD was estimated in the remain-
ing trials and compared to the human annotation. An EDP-
point was considered missed and excluded if a threshold of
tin = 50 ms was exceeded.

2. Results and Discussion

Figure 2 shows the influence of the length ¢ of the filter
@ on the temporal root mean square error (RMSE) as well
as the mean and median error. For ¢ = 1, a large RMSE as
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Figure 2. Gross cross-validated RMSE, mean and median
error for different filter orders q.

well as a systematic offset, indicated by the mean and me-
dian error, can be observed. This can be explained by the
observation that for ¢ = 1, @ becomes a simple differen-
tiator. Thus, the EDP point is estimated to be at the largest
slope of the LVP signal, which is consistent with the find-
ings reported in [3]. For ¢ > 8, no notable improvement in
terms of RMSE and offset can be achieved.

Figure 3 shows the percentage of missed as well as
falsely detected EDP time points. It is evident that, using
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Figure 3. Gross FPR and FNR for different filter orders q.

a basic peak detection strategy, a low false positive rate of

about 1% can be achieved. At the same time, the percent-
age of EDP time points missed ranges between 13% and
5% and increases for ¢ > 8. It should be noted that this
increase in false negatives is attributed to shortcomings of
peak-selection strategy.

Figure 4 shows the distribution of EPD estimation error
per trial for ¢ = 8. For this analysis, cross-validation was
used, i.e., all filters were used to predict the EDP for one
case except for the filter trained on this specific dataset.
After that, averaging was performed. Numeric details are

T T T T T T T T T T

N
o
_‘

T

estimation error [ms]
N
o o
#
-
HbH
-~
-4

n

o

- —
Fo_ — — —

20 — . . . . . . . . . .
T
2 15 .
g oo
g 10 _ T | 7
- I o
= 0 d il . 2l )
o 0% %P E=3 @? |
T 5¢ 1 1 1
= |
% -10r 1 1
[«]
-15 — ' ' ' ' ' ' ' ' ' '
1 2 3 4 5 6 7 8 9 10 1M1
trial #

Figure 4. Boxplot of the cross-validated estimation error
in terms of time and pressure value for ¢ = 8. Outliers are
omitted for clarity reasons.

given in Table 2.

Several observations can be made. First, the estimation
quality is rather homogeneous in terms of temporal accu-
racy. Here, a mean RMSE of 11.6ms can be achieved
when cross validation is applied. This error is slightly
lower (10.5ms), when no cross validation but the filters
trained on the respective data are used. It is further worth
noting that, for some cases, a comparatively large system-
atic error exists. Second, the estimation error in terms of
the signal’s amplitude differs strongly. While for some
cases it lies in the range of the sensor accuracy, it comes
close to the standard deviation of the EDP for others.
Moreover, the difference between cross validation and us-



estimation RMSE (mean error)
trial [ms] [mmHg]

# self cross-val. self  cross-val.
1 8.6 10.0 29| 12 15 (04
21122 138 64)| 3.6 45 (2.0
3 7.6 8.3 05 ] 22 26 (0.0
41120 15.0 9.2) | 3.0 41 (2.3
51129 132 57| 36 38 (0.9
6| 95 105 3.0 | 3.1 35 (0.6)
7 3.7 3.7 ©0.8) | 1.0 1.0 (0.2
8 8.3 85 (-1.0) | 47 48 (-0.9)
91112 109 2.0 | 47 47 (0.0

10 | 150 18.1 (114) | 45 63 (3.9

11 | 146 16.0 96)| 79 84 (1.6)

@ | 105 11.6 46) | 3.6 41 (1.0

Table 2. Temporal and pressure error in terms of RMSE
as well as systematic offset for ¢ = 8. The last row shows
the mean over all trials.

ing the signal-specific filter coefficients is more profound.

In [3], the difference between human annotation and
the proposed peak curvature method was reported to
be -1.5(4.2)ms in terms of mean(SD). For intra- and
inter-observation error, these values were found to be
0.7(2.7) ms and 2.6(3.4) ms, respectively. Thus, an accep-
tance region of £10.1 ms was defined. Considering these
values, our method exhibits a comparable yet inferior per-
formance. No results in terms of pressure accuracy were
reported in [3].

While the exact reason for the varying performance of
the proposed method need further investigation it should be
noted that the performance using the optical sensor (type
’B’) was notably higher than with the conventional sensor.

Animals from the range of “Fetus pre/post birth” to “2-3
year Sheep” were considered and a total of 2000 ED time
points were annotated in [3]. In this trial, only adult sheep
were considered. However, due to the provoked infarction
an the subsequent administration of pharmaceuticals, se-
vere changes in the sheep’s CVS could be observed. In
addition, a total of 201885 ED time points were manually
annotated.

Finally, it should be noted that a basic peak selection
algorithm was applied to the estimated signal §(t) =
a(t) * z(t) only. Assuming a low computational cost for
peak detection, this would allow the estimation of EDP
with low latency for real-time applications, as filtering with
q = 8 introduces a delay of only 36 ms. However, this
strategy is likely suboptimal in terms of estimation error
and could probably be improved by adding more features
derived from the LVP signal.

3. Conclusion

In this paper, a novel method based on deconvolution
of the LVP signal to estimate the ED point in time was
proposed. The method was evaluated on a total of 37.6
hours of human annotated animal trial data. Using cross-
validation, a RMSE of 11.6 ms (4.1 mmHg) was achieved.
This demonstrates comparability to methods proposed in
the literature in [3]. It further shows the general applicabil-
ity and the potential of deconvolution methods for feature
extraction and processing of cardiac signals.
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