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Abstract 

In this paper, the topological and dynamical properties 
of the heart sounds are assessed. The signal is pre-
processed and projected into an embedding subspace, 
which is more suitable to detect the irregularities and the 
unstable trajectories registered during the cardiac 
murmurs than the original heart sound signal. 

 We present a method for heart murmur classification 
divided into five major steps: a) signal is divided into heart 
beats; b) entropy gradient envelogram is computed from 
the pre-processed signal; c) the orbital trajectories are 
reconstructed using the embedding theory; d) n orbits in 
the embedding subspace are extracted (per heart beat); e) 
the median of the n orbits is used as an input to K-Nearest 
Neighbors (KNN) classifier.  

The experimental results achieved are in agreement 
with the current state of art for heart murmur 
classification. 

1. Introduction

Heart sound auscultation using a traditional stethoscope 
is the simplest, fastest and cheapest method for heart 
examination. Although the importance of the traditional 
auscultation methods has decreased due to its inherent 
restrictions.  The phonocardiogram (PCG) has preserved 
its importance in pediatric cardiology, cardiology, and 
internal diseases, evaluating congenital cardiac defects. 
The phonocardiogram is divided into heart cycle (S11) 
components such as: S1 (first heart sound) and S2 (second 
heart sound) [1]. These establish the boundaries of the 
other two fundamental components of a heart cycle: the 
systole (S21), and the diastole (S12).  The S1 and S2 are 
generated by the opening and closing of the heart valves, 
in pathogenic situations additional sounds such as S3, S4 
or murmurs are listened [1]. Heart murmurs are turbulence 
phenomena characterized by momentum diffusion, high 
momentum convection, and rapid variation of pressure and 
velocity both in space and time [1]. The automatic 
detection of heart murmurs strongly depends on the 
extraction of an appropriate set of features, which are 

hopefully capable of splitting the data into two or more 
categories: normal and different types of abnormal cases.  

 Ahlstrom proposed a set of 207 features composed by 
Shannon energy, wavelet coefficients, fractal dimensions 
and recurrence quantification analysis. A subset of 14 
features was derived using a Pudil’s sequential floating 
forward selection algorithm. Using a neural network 
classifier, this subset achieved 86% of accuracy [2]. 
Delgado-Trejos compared three types of features: spectral, 
perceptual and fractal features. Using a K-nearest 
neighbor’s classifier they observed that fractal features 
provide the best accuracy (97, 17%) followed by spectral 
(95, 28%) and perceptual features (88,7%). This fact it is 
explained by the presence of long-range (fractal) 
correlation along with distinct classes of non-linear 
interactions [3]. The feature set described in our previous 
work [4] is a combination of time-frequency domain, 
perceptual and fractal analysis.  We also proposed: 1) the 
dimension correlation curve; 2) the exponential decay of 
the false nearest neighbor integral as new features. These 
express the higher complexity registered for the murmur 
cases when compared to the normal cases and the 
nonexistence (mostly of the times) of a stable plateau in 
dimension correlation curve for the murmur cases [5]. This 
motivate us to continue our study on the topological 
properties of the heart sound signals. The two main 
contributions presented in this paper are: 1) a new 
embedding subspace, where orbital trajectories are 
associated to heart sounds; 2) from the orbital trajectories, 
a new topological feature is extracted, namely n orbits. 

The paper is organized as follows: in the second section, 
the methodology is explained. In the third sections, the 
materials are presented. In the fourth and fifth sections, 
results are presented and conclusions are withdrawn. 

2. Methods

2.1. Signal pre-processing 

In order to attenuate noise, the PCG signal 𝑥𝑥(𝑡𝑡) is 
filtered with a band-pass, zero phase Butterworth filter 
order 10 (30-450Hz). Afterwards, the mean �̅�𝑥 is subtracted 
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from the signal  𝑥𝑥(𝑡𝑡) and it is scaled as  𝑋𝑋𝑁𝑁(𝑡𝑡) =
𝑥𝑥(𝑡𝑡)−�̅�𝑥

max (𝑥𝑥(𝑡𝑡′)−�̅�𝑥, 𝑡𝑡′∈ [1,𝑀𝑀])
 , where 𝑀𝑀 is the time series length. 

2.3. Entropy gradient 

To compute the entropy gradient, we first convert 
𝑋𝑋𝑁𝑁 into a sequence of delay vectors as it is described by the 
embedding theorem [6]. In more detail, we wrap the 
original signal around a cylinder as it is shown in Figure 1. 
This cylinder is not static and it moves one or more 
samples per unit of time to the right1. It is advisable to tune 
the cylinder speed depending to the sampling rate of the 
signal. In our case, the cylinder moves 40 samples per unit 
of time. From this cylinder, a sequence of 𝑃𝑃 = 𝑀𝑀 −
𝛤𝛤(𝑚𝑚 − 1) delay vectors are collected sequentially, where 
𝑀𝑀 is time series length,  𝛤𝛤 is the time lag and m is the vector 
dimension [6]. For example, the  𝑖𝑖𝑡𝑡ℎ delay vector  𝑑𝑑𝑖𝑖 is 
collected after having shifted 𝑗𝑗𝑡𝑡ℎ units of time to the right 
as:  

𝑑𝑑𝑗𝑗𝑖𝑖 =  {𝑋𝑋𝑁𝑁([𝑖𝑖 + 𝑗𝑗] % 𝑀𝑀), … ,𝑋𝑋𝑁𝑁([𝑖𝑖 + 𝑗𝑗 + (𝑚𝑚 −
1) 𝛤𝛤  ] %  𝑀𝑀)} ∈ ℝ𝑚𝑚, 𝑖𝑖 ⊂ {1,⋯ ,𝑃𝑃}, 𝑗𝑗 ⊂ {1,⋯ ,𝑀𝑀} 2

In order to generate entropy fluctuations over the time,
a set of data points are not assembled into delay vectors 
and they belong to so called “rejection region”, in our 
case 𝑋𝑋𝑁𝑁

𝑟𝑟𝑟𝑟𝑗𝑗 = 𝑋𝑋𝑁𝑁(𝑃𝑃 + 1),⋯ ,𝑋𝑋𝑁𝑁(𝑀𝑀). This region is not 
taken into account for the total entropy of the system. 

Finally, all delay vectors are normalized (�̃�𝑑𝑗𝑗𝑖𝑖 =
𝑑𝑑𝑗𝑗
𝑖𝑖

√𝑃𝑃
) and 

stored into the matrix 𝐾𝐾𝑗𝑗 . 

Figure 1. An infinite PCG signal, obtained by 'wrapping' a 
finite one around a cylinder. New samples can be generated 
by simply rotating the cylinder to the left or to the right. 
The rejection region is represented in gray. 

The autocorrelation of each embedding matrix 𝐾𝐾𝑗𝑗  is 
computed as: 

𝐶𝐶𝑗𝑗 = 𝐾𝐾𝑗𝑗𝑇𝑇𝐾𝐾𝑗𝑗 ,  𝐶𝐶𝑗𝑗 ∈ ℝ(𝑚𝑚×𝑚𝑚) 

1 Shifting the cylinder to the left gives equivalent results. 

The 𝐶𝐶𝑗𝑗 matrix is a metric of correlation between delay 
vectors in the time series 𝑋𝑋𝑁𝑁(𝑡𝑡). 𝐶𝐶𝑗𝑗 is a real symmetric 
matrix, its eigenvalues are real and its eigenvectors are 
orthogonal. Let 𝐷𝐷𝑗𝑗  be the diagonal matrix of the eigen 
values of 𝐶𝐶𝑗𝑗 sorted in a descending order ƛ1> ƛ2>....>ƛ𝑚𝑚. 
The highest eigenvalues are associated with the most 
relevant structures of the signal. In contrast, the lowest 
eigenvalues are usually associated with very small 
variations and noise [7]. Using the 𝐷𝐷𝑗𝑗  vector, the 𝑗𝑗𝑡𝑡𝑡𝑡  
entropy gradient is given by: 

∇𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) = ��̂�𝜆𝑗𝑗𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙2��̂�𝜆𝑗𝑗𝑘𝑘� 
𝑚𝑚

𝑘𝑘=1

Where �̂�𝜆𝑗𝑗𝑘𝑘  is the normalized eigenvalue λ𝑗𝑗𝑘𝑘. The results of 
applying the  ∇𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 to a PCG signal are shown in Figure 
2. 

Figure 2. The ∇𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 (in blue) and the normalized PCG 
signal (in gray). 

It is important to understand, that a simply cylinder rotation 
to the left or to the right causes parts of the signal to move 
in and out of this “rejection” region 𝑋𝑋𝑁𝑁

𝑟𝑟𝑟𝑟𝑗𝑗. As a 
consequence, the fluctuations in the total entropy are 
caused by different degrees of predictability over time. We 
expect that when noisy parts of the signal enter and 
leave 𝑋𝑋𝑁𝑁

𝑟𝑟𝑟𝑟𝑗𝑗, they will not generate significant entropy 
variations. But if noisy parts of the signal enter on 𝑋𝑋𝑁𝑁

𝑟𝑟𝑟𝑟𝑗𝑗and 
signal parts leave it, this is quite likely to create a 
significant amount of entropy variation. In our 
experimental setups, the entropy gradient is generated by 
setting (𝑚𝑚 = 5,𝛤𝛤 = 100).  

2.4. Embedding space 

After the ∇𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 is computed, delay vectors (𝑚𝑚 = 2,𝛤𝛤 =
2) are extracted sequentially and saved into the embedding
matrix 𝐿𝐿. 

2 % is the module operator 

 

 

  



Figure 3. (A) Orbital trajectories in the embedding 
subspace belonging to a healthy person during a single 
heart cycle. (B) Radial component of each delay vector.3 

The orbital trajectories in the embedding space are 
created from the embedding matrix 𝐿𝐿, where each delay 
vector 𝑑𝑑𝑥𝑥,𝑒𝑒  =  (𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑒𝑒) is directly mapped into point in 
such a space. In each heart cycle for normal individuals, it 
is possible to distinguish two orbits: the S1 and S2. The S2 
is generated by the closing of the semilunar valves. This 
mechanism is strongly dependent on external and internal 
cardiac factors, like the blood pressure in the aortic and 
pulmonary arteries and also the blood pressure in the 
ventricles [1]. S1 is a less complex phenomenon, generated 
by the A-V valves closing, which uniquely depends on 
internal cardiac factors like the blood pressure in the 
atriums and ventricles [1]. Therefore we speculate that S1 
should be more predictable than S2, given that it does not 
depend on so many factors. Since entropy gradient 
measures the predictability degree of different sources, if 
our speculations are true, then the S1 trajectories (more 
predictable, lower entropy gradient) should be typically 
bounded and contained inside of the S2 trajectories (less 
predictable, higher entropy gradient). More experiments 
are required to verify this hypothesis but an example of this 
is beautifully depicted in Figure 3A, corresponding to a 
real heart sound cycle collected from a healthy person. 

The heart sound trajectories are usually eccentric (see 
Figure 3A and 3B), and their two main axis encode 
interesting information. The major axis 𝒂𝒂 gives us the 
maximum entropy gradient variation within the whole 
signal, which can be interpreted as a useful measure of the 
unpredictability strength of the signal. The minor axis b is 
less informative, proportional to the temporal duration. 

3 https://youtu.be/FC5PsWtdvI4   
4 https://youtu.be/aJvNtba-vIY  

Figure 4. (A) Orbital trajectories in the embedding 
subspace belonging to an individual with heart murmur 
during a single heart cycle. (B) Radial component of each 
delay vector.4 

In contrast, individuals with heart murmurs, revealed 
more complex and unstable trajectories.  In Figure 4A, it is 
possible to observe a systolic murmur phenomenon, where 
the existing murmur is partially overlapping the S1 and S2 
components. This murmur is responsible for the 
destruction of the topological structures which existed in 
the heart sound signal. This particular murmur generates 
swirls, which are usually associated to the turbulence 
phenomenon generated by a leakage of blood backwards 
through the Tricuspid or Mitral valve, each time the right 
or the left ventricle contracts respectively [1]. Because of 
the swirls, the number of orbits detected compared to the 
healthy cases are in general different, see Figures 3B and 
4B. This feature is going to be used to distinguish healthy 
and ill subjects.   

2.4. Downsampling L 

In order to speed up our computation and to reduce the 
redundancy in the embedding matrix 𝐿𝐿 a downsampling 
methodology is implemented: 1) From each pair of delay 
vectors (∀ 𝑑𝑑𝑖𝑖,,𝑑𝑑𝑗𝑗,)  ∈ 𝐿𝐿 and 𝐿𝐿 =  ℜ𝑃𝑃×2, the Euclidean 
distance is computed and saved into the matrix  𝐻𝐻 = ℜ𝑃𝑃×𝑃𝑃; 
2) set the  𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙(𝐻𝐻) =  ∞, since the auto-distance is always
the minimum distance when compared to any other point; 
3) For ∀𝑗𝑗  in 𝐻𝐻,𝑗𝑗 select the closest delay vector 𝑑𝑑𝚤𝚤� =
 𝑚𝑚𝑖𝑖𝑚𝑚 (∀𝑗𝑗 ∈ {1, … , 𝑙𝑙}, 𝑖𝑖 ≠ 𝑗𝑗: �𝐻𝐻𝑖𝑖.𝑗𝑗�); 4) the delay vector 𝑗𝑗 is 
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discarded if exists a neighbor delay vector (d_i ) ̿ closer 
than a pre-defined threshold (in our case ≤〖10〗^(-8)). 

2.5. Feature Extraction 

From each heartbeat, 𝑚𝑚 distinct trajectories in the 
embedding space 𝐿𝐿 are computed by: 1) convert each delay 
vector 𝑑𝑑𝑥𝑥,𝑒𝑒 in 𝐿𝐿 into the polar coordinate system 𝑑𝑑𝑟𝑟,𝜃𝜃; 2) 
Extract the radial component of each delay vector and store 
it into a vector 𝐹𝐹𝑟𝑟; 3) compute 𝐺𝐺𝑟𝑟 = 1 −  𝐹𝐹𝑟𝑟

max (𝐹𝐹𝑟𝑟)
 ; 4) select 

local maximums in 𝐺𝐺𝑟𝑟  which satisfies an optimal criterium 
(in the present case, a local maximum is selected if the peak 
prominence is > 0.05) see Figures 3B and 4B; 4) count the 
number of extracted peaks. Finally, the median of all 
heartbeats is used as feature for classification [8]. 

3. Materials
The heart sounds used have been collected in Real 

Hospital Português (Recife, Brasil) [9]. The auscultation 
spots (aortic-AV, pulmonary-PV, tricuspid-TV and mitral-
MV) were auscultate sequentially for about 15 seconds at 
4000Hz sampling frequency. Two cardiacpulmonologists 
manually annotated the locations of S1 and S2 using the 
Audacity software. The dataset is compose by (7-TV, 8-
AV 10-PV, 9-MV) normal cases and (7-TV, 8-AV, 10-PV, 
9-MV) systolic murmur cases.  

4. Results
4.1. Experimental setup 

The number of orbits is used for training and testing a K-
Nearest Neighbors (KNN) algorithm with K=3. Since the 
size of the dataset is relatively small, a leave-one-out cross 
validation methodology was implemented. This procedure 
is repeated for the mitral, tricuspid, aortic and pulmonic 
auscultation focus independently, the results are shown in 
Table I. The confidence intervals are computed using a t-
test with 95 % confidence level.  

MURMUR CLASSIFICATION RESULTS IN DIFFERENTS AUSCULTATION 
FOCUS 

Results 
(%) 

Feature set containing all features 
MV TV AV PV 

Recall 0.70-1 0.78-1 0.75-0.75 0.73-0.78 
Precision  0.67-1 0.71-1 0.75-0.75 0.70-0.80 
Sensitivity  0.70-1 0.78-1 0.75-0.75 0.73-0.78 
Specificity  0.70-1 0.78-1 0.75-0.75 0.73-0.78 
F-Measure  0.80-0.80 0.83-088 0.77-0.84 0.74-0.76 
Accuracy  0.81-0.81 0.86-0.86 0.75-0.75 0.75-0.75 

Cohen’s kappa 0.64-0.64 0.71-0.71 0.50-0.50 0.50-0.50 

The proposed feature does not perform equally in each 
auscultation spot. The best results were achieved in the 
Tricuspid spot, mostly because, the murmurs are well 
audible in this spot (leaky in the Tricuspid valve). The 
Tricuspid and Mitral results are quite good, and in 

agreement to other results published in the literature [2, 3]. 

5. Conclusion
This paper introduces an embedding subspace, which is 

generated by collecting delay vectors and using the entropy 
gradient as a predictability measure. In this subspace the 
heart sounds dynamics are assessed, and the results (in the 
different auscultation spots) show an increase in accuracy 
when compared to our previous results [4] and only using 
one topological feature (𝑚𝑚 𝑙𝑙𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑜𝑜). We can conclude that 
the heart murmur trajectories in the embedding subspace 
are substantially different when compared to healthy 
patients. Given the presented results, we argue that the 
trajectories in the projected embedding subspace are a very 
promising avenue given the physiological clues that this 
new space seems to encode.  

Acknowledgements 

This article is a result of the project NanoSTIMA, 
NORTE-01-0145-FEDER-000016, supported by Norte 
Portugal Regional Operational Programme (NORTE 
2020), through Portugal 2020 and the European Regional 
Development Fund. 

References 

[1] A.Guyton, J.E.Hall, eds., Textbook of Medical Physiology. Elsevier 
Saunders, 11th ed., Ed Hall, Jun 2006. 

[2] C. Ahlstrom, P. Hult, P. Rask, J. Karlsson, E. Nylander, 
U.Dahlstrom, P.Ask “Feature extraction for Systolic Heart Murmur 
Classification”, Ann Biomed Eng, vol. 34, no. 11, pp. 1666–1677, 
2006. 

[3] E. Delgado-Trejos et al., “Digital auscultation analysis for heart 
murmur classification,” Ann Biomed Eng, vol. 37, no. 2, pp. 337–
353, 2009. 

[4] J.Oliveira, C.Oliveira, B.Cardoso, M.S.Sultan, M.Coimbra, "A 
multi-spot exploration of the topological structures of the 
reconstructed phase-space for the detection of cardiac murmurs", 
Proc. IEEE EMBC 2015. 

[5] J.Oliveira, A.Castro, M.Coimbra, “Exploring Embedding Matrices 
and the Entropy Gradient for the Segmentation of Heart Sounds in 
Real Noisy Environments”, Proc. IEEE EMBC 2014. 

[6] H. Kantz, T. Schreiber Nonlinear Time Series Analysis, 2th ed. Ed. 
Cambridge University Press, Jan 2004. 

[7] D.Kumar, P.Carvalho, M.Antunes, R.P.Paiva, J.Henriques, “Heart 
murmur classification with feature selection.”  IEEE EMBC 2010 

[8] A. W. Bowman, and A. Azzalini, “Applied Smoothing Techniques 
for Data Analysis”. New York: Oxford University Press Inc., 1997. 

[9] D. Pereira, F. Hedayioglu, R. Correia, T. Silva, I. Dutra, F. Almeida, 
S. S. Mattos, M. Coimbra, "DigiScope – Unobtrusive Collection and 
Annotating of Auscultations in Real Hospital Environments", IEEE 
EMBC 2011. 

Address for correspondence. 

Name. Jorge Oliveira 
Address. Rua do Campo Alegre, 1021/1055 4169-007 Porto 
Portugal 
E-mail address. oliveira_jorge@dcc.fc.up.pt 

 

 

  


	058-410
	In order to speed up our computation and to reduce the redundancy in the embedding matrix 𝐿 a downsampling methodology is implemented: 1) From each pair of delay vectors (∀ ,𝑑-𝑖,.,,𝑑-𝑗,.) ∈𝐿 and 𝐿= ,ℜ-𝑃×2., the Euclidean distance is computed a...
	3. Materials
	4. Results
	5. Conclusion




