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Abstract

Identifying high-risk patients requiring an ICD among
asymptomatic Brugada patients is nowadays a bit chal-
lenging. In this study, 62 patients suffering from Brugada
syndrome (14 symptomatic) were studied by analyzing the
12-lead ECG recording acquired during a physical exer-
cise test. For each patient, conventional HRV indices from
time-frequency analysis and heart rate recovery (HRV fea-
tures), as well as several morphological depolarization in-
dices (QRS features), were evaluated at relevant periods of
the test. Most discriminant features from both the HRV and
ORS sets were selected using a two-stage feature selection
algorithm and used for model classification building. For
the detection step, an ensemble classifier using stacking
approach plus a fixed combiner was designed, using linear
discriminant analysis as the base classification algorithm.
Best features from each model were then used for building
the final individual and combined classification models.
Detection performance using the symptomatic group as
the target class, was as follows: HRV-based model: Se=1,
Sp=0.67, AUC=0.87; QRS-based model: Se=75, Sp=0.67
AUC=0.73. When joining best features of both models
(HRV-QRS-based model), the performance increased up
to Se=1, Sp=0.83, AUC=0.90. The study showed that by
combining both HRV and depolarization analysis, a better
risk stratification can be performed. This could be use-
ful for the identification of Brugada patients with previous
symptoms, and it may help to the decision making process
of asymptomatic patients needing an ICD.

1. Introduction

Brugada syndrome (BrS) is a genetic pathology, firstly
described more than 20 years ago, and associated with a
high risk for sudden cardiac death (SCD) in patients with
an apparently normal structural heart. The coved type-1
ECG pattern (ST elevation > 2mm, negative symmetric T
wave, etc) in > 1 lead of the right precordial leads V1-
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V3 is the only type that can had a BrS major diagnostic
marker. [1].

The main challenges regarding BrS are related to pa-
tient risk stratification and the definition of the best treat-
ment approach. The cardioverter defibrillator (ICD) im-
plantation is the only validated treatment recommended
for symptomatic patients. However, this decision is more
complex on asymptomatic patients, who represent between
60% of the BrS population. The difficulty is thus to iden-
tify which of the asymptomatic patients may benefit from
an ICD implantation.

Depolarization disorders have been one of the two main
hypotheses underlying the pathophysiology of BrS. They
are associated with slowing conduction within the right
ventricular outflow tract (RVOT) [2]. Moreover, the role
of the autonomic control, seems to have an important di-
agnostic component in this pathology.

In this study we aimed at designing a classifier able to
distinguish Brugada syndrome patients according to symp-
tomatology. To do this, we extracted a set of classical
and unconventional QRS morphological features, as well
as features derived from HRV analysis. These two sets
of features were used for building two different Brugada
models. Overall performances were assessed individually
and compared with the model obtained from merging the
two alternative approaches.

2. Materials and methods

2.1. Population

The study population comprises 62 patients suffering
from Brugada syndrome enrolled in the multicenter PHRC
BRUGADA study, led by the department of Cardiologie et
Maladies Cardiovasculaires at CHU Rennes. From the to-
tal population, 14 patients have had previous events such
as syncope, VF or sudden cardiac death (SCD) and were
classified as symptomatic patients. The remaining 48 pa-
tients were thus asymptomatic. During a physical exercise
test, the standard 12-lead ECG recording sampling at 1000
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Hz was acquired for each patient. The clinical protocol
used for this particular test is described below:

o Warm-up phase: 2 minutes of initial workload by pedal-
ing at 50 W (30 W for women).

o Exercise phase: consecutive periods of incremental ef-
fort of 30 W (20 W for women) every 2 minutes until
reaching at least 80% of the maximal theoretical heart rate,
defined by H R4, = 220 — age.

« Active recovery phase (ARP) : 3 minutes pedaling with
the initial workload of 50 W.

« Passive recovery phase (PRP): 3 minutes at rest.

2.2.  Preprocessing

All ECG signals were preprocessed before the automatic
extraction of the analyzed indices. This included automatic
QRS complexes detection and subsequent visual inspec-
tion, baseline drift attenuation via cubic spline interpola-
tion, 4-th order Butterworth low pass filtering at 45 Hz to
remove muscular noise and wave delineation using an evo-
lutionary optimization approach [3].

2.3. Depolarization parameters

Several ECG features including classical QRS param-
eters as well as a set of unconventional QRS parmaters,
were evaluated through the entire exercise test and for each
standard lead in a beat-to-beat basis. In the classical group
we have included the R and S waves amplitude (R, and
S.), the QRS duration (QRSy) and the maximum vector
magnitude (VM). In the unconventional group, we have
evaluated the main three QRS slopes, defined as the up-
stroke (Ry;) and down-stroke (Rp ) of the R wave and the
up-stroke of the S wave (Sy) [4], as well as the angles
formed by projecting the lines associated with the above-
mentioned slopes, denoted as the angles (¢ ) and (¢g) [5].

After computing the complete set of QRS fea-
tures, the delta change, A)gx, achieved between the
time of maximum effort peak (T2) and the begin-
ning of the exercise (T1) was evaluated, being J =
{QRSd,VM,Ra,Sa,RU,RD,SU,¢R,¢S}. Likewise,
the delta change, A)gg, achieved between the end of
recovery (T3) and T2 was also evaluated to assess the
amount of change occurring during the complete recov-
ery phase. Moreover, both A)Ygx and A)gg were cor-
rected by the heart rate changes occurring during the same
periods, AHRgx and AHRRgg, and denoted as AJ}EX and
Ak, respectively. Relative changes, expressed as Ry =
%, with ¢t = {T'1, T2, T3}, were also calculated.
24. HRYV parameters

Time-frequency approach: The HRV analysis was con-
ducted using a time-frequency (TF) approach due to the
non-stationary nature of the available signals, acquired

during a physical stress test. First, a cubic splines inter-
polation at 4 Hz was applied to have RR series regularly
sampled, denoted as g (t). Then, a bidirectional, 4th or-
der high-pass Butterworth filter was applied with a cut-off
frequency of 0.03 Hz to remove the very low frequency
components.

The smoothed pseudo Wigner-Ville distribution (SP-
WVD) transform, available from the Time-Frequency tool-
box [6], was subsequently used since it has proved to be
useful for cardiovascular signals analysis. This quadratic
TF approach is defined as the Fourier transform of the in-
stantaneous autocorrelation function. However, because
of the fact that it is affected by significant interference
terms, the SPWVD introduces a smoothing kernel func-
tion (7, v) that attenuates such interferences terms while
maintaining a suitable time-frequency resolution. Let
Aggr(7,v) be the ambiguity function of the signal z g,
the SPWVD is defined as:

ARR(T,U) = / TRR (t—|— %) (t _ %) e—J2mut gy (1)
and
9 2722
¥(r,v) = exp{ -7 [(S) + (:) ] 2)

then, the Cohen’s class distribution is defined by:

Crr(t, f) = / / U(7,v)Arg(1,0)e? "D dudr
3)
HRYV was assessed as the total power in LF (0.04 - 0.15
Hz) and HF (0.15 - 0.4 Hz) bands obtained from the SP-
WVD, where the Wigner-Ville distribution was computed
from the RR series.

LF(t) = / Cra(t, f)df 4
LF

HF(t) = / Crrlt, )df. 5)
HF

SPWVD leads to time-frequency HRV estimates repre-
senting time series that vary during the execution of the
stress test. These features, accounting for the sympathetic
and parasympathetic activity of the ANS, were normalized
by the total power (TP), defined as the sum of both spectral
bands (TP = LF + HF), leading to the time series LF},,,(t)
and HF,,(t). The ratio between LF and HF in the time-
frequency domain, %(t), was also obtained so as to as-
sess the global sympatho-vagal balance.

Finally, the ANS-related parameters LF,,, (t), H Fy,,,(t)

LF . .
and £ (1), were averaged using non-overlapped windows



of 1-min duration for each individual patient, leading to
LF,,(i), HF,,(i) and ££ (i), which stand for the intrap-
atient mean evaluated at minute <.

Heart rate recovery: The heart rate recovery (HRR),
usually defined as the heart rate decay (beats/min) during
the first minute immediately after the exercise cessation,
was also calculated for all patients. Moreover, the HRR
at minute 2nd and 3rd, were also evaluated in this study
to further assess both the parasympathetic reactivation and
sympathetic withdrawal during the recovery phase.

2.5. Features selection procedure

Once all features were extracted for each patient and
group, an hybrid feature selection approach was applied
to select the most relevant features for classifying BrS pa-
tients. This hybrid approach consists of two steps. The
first one is a simple filter algorithm, applied to quickly re-
move those features of less importance by ranking them
according to the RELIEF algorithm [7]. The second step,
applied on the reduced set of features obtained in the
first step, is a sequential floating feature selection (SFFS)
method [8]. SFFS performs a series of successive for-
ward/backward searches gradually improving the best fea-
ture subset found. We also used the wrapper strategy dur-
ing SFFS, which uses further classification algorithm as
the evaluation function to compare different combinations
of features in terms of model accuracy.

2.6. Ensemble classifier (LDA + combiner)

After having obtained the best set of features for each
model, we implemented an ensemble or combined clas-
sifier based on two different stages in order to achieve
the best possible detection performance. The first stage
consisted in training several “base” classifiers (with LDA
algorithm) using the stacked generalization approach [9],
which basically perform a k-fold cross-validation type se-
lection. In brief, the entire training subset is divided into &
blocks, and each base classifier CF is first trained on k-1
blocks of the training subset Trf. Then, each base clas-
sifier is evaluated on the k-th block Tef not seen during
training. The outputs of individual base classifiers O{f (soft
outputs or posterior probabilities) are then combined using
a simple fixed rule (mean, product, maximum or minimumt)
in the second stage of the ensemble classifier for reducing
classification error and the overall risk of making a partic-
ularly poor selection. Figure 1 illustrates the stacking pro-
cedure using 3 folds, although we set k= 10 in this study.

2.7. Performance evaluation

The initial dataset was randomly split into training and
testing subsets using 75% and 25% of the data, respec-
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Figure 1. Diagram of the first part (stacking) of the ensem-
ble classifier. FD’,f: features dataset split in k& blocks; Tr{f s
Te’bc : training and testing sets of fold k; C{f base classifiers;
Ol’f soft outputs used as the input data of combiner.

tively. The best set of features obtained for each model
(QRS and HRV models) were used individually, and in
conjunction, to train the ensemble classifier described in
the above section. The classification performance was as-
sessed for each individual trained classifier (the QRS- or
HRV-based model) using the test subset, as well as for
the global classifier that combines all the best features
from both groups (QRS-HRV-based model). As perfor-
mance metrics, we calculated the area under the ROC
curve (AUC), as well as the sensitivity (Se) and specificity
(Sp) associated with the optimum operating point in the
receiver operating characteristic (ROC) curves.

3. Results

The final two Brugada models derived after applying the
feature selection step are displayed in Table 1. For the
HRV-based model, 16 features were selected from a total
of 73. Two-thirds of the LF/HF and HFnu related features
were associated with the recovery (RE) and post-recovery
(PR) periods of the exercise test, which is also noted for
features related to LFnu. Regarding the QRS-based model,
only 11 relevant features were selected from a total of 304.
Most of them were related to leads with remarkable pos-
itive QRS morphology such as leads II, aVF, V5 and V6.
Lead V3 was also relevant for the markers ¢g and Sy,
which are better defined in QRS complexes with QS and
S morphologies.

The ROC curves associated with the final two Brugada
models presented in Table 1 are displayed in figure 2, to-
gether with the ROC curve corresponding to the model
combining both the QRS and HRV selected features. As
it can be observed, the overall performance of the HRV
model (AUC=87%, Se=100%, Sp=67%) is superior to that
of the QRS model (AUC=73%, Se=75%, Sp=67%). Like-



Table 1. Features obtained from each model

Model Features

HRV model (L—Enu)’”2 (FFnuw) ES - (FEnu) PR
(LE ) PRT - (T Fra) PX1 - (H Pty 2
(HFnu)®Fl - (HFnu)PR3 - (HFnu)P RS
(LFnu)EXY (LFnu)PX2 - (LFnu)PF! -
(LFnu)BES - (LFnu)P B2 - (LFnu)PR5 -

(LFnu)PR6
QRS model (Ra '( ) (¢R)?Il -

(AasR)aVF (A@)avp (ASU)
(Ags)EX - (Aps)BE - (pR)TE —
(RRU)VS (RSU )v4

wise, when both models are combined, the overall perfor-
mance of the new generated model (AUC=90%, Se=100%,
Sp=83%) is superior to both individual models. All the
above-mentioned results were obtained using the mean op-
erator as the fixed combiner.

4. Discussion and conclusions

In this study, an ensemble classifier has been imple-
mented to distinguish Brugada syndrome patients accord-
ing to symptomatology. Morphological features extracted
from the QRS complex and HRV markers obtained from a
time-frequency approach were used alone and in combina-
tion to design three different Brugada models.

The proposed two-stage feature selection approach sig-
nificantly reduced the final subsets of features used for
the QRS- and HRV-based models. From those relevant
features selected in the HRV model, two-thirds were re-
lated to recovery and post-recovery periods of the exercise
test, suggesting that autonomic control (including sympa-
thetic and parasympathetic divisions) assessment might be
more appropriate in these particular periods when study-
ing Brugada patients. Moreover, from table 1 it can be
noted that parasympathetic related features predominate as
compared to the sympathetic related ones. Regarding the
QRS model, none of the classical markers except R, were
relevant for the model finally obtained, thereby emphasiz-
ing the potential utility of non-conventional QRS markers.
Note also that, for most features, better performing results
were found for their absolute or relative changes during the
exercise periods.

Finally, the overall performances obtained for the three
models, suggested that HRV markers are better suited for
classifying Brugada patients than the QRS morphological
markers. However, when both models are combined in a
new one, the performance increases noticeably.
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Figure 2. ROC curves for the final HRV- and QRS-based
models and for the combination of both.
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