An Algorithm for Fitting Local Membrane Parameters to an Action
Potential Duration Map in a Tissue with Electrotonic Interactions

Angelina Drahi'?, Akshay Kota Aswath Kumar®?, Vincent Jacqueme

t1’3

I Université de Montréal, Montréal, Canada
2 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3 Hopital du Sacré-Coeur de Montréal, Montréal, Canada

Abstract

Repolarization gradients contribute to arrhythmogenic-
ity. They can be introduced in computer models of car-
diac tissue by locally adjusting an intrinsic parameter of
the membrane model. Electronic coupling, however, mod-
ulates the dispersion of action potential duration (APD).

We developed an algorithm based on a modified New-
ton method to iteratively adjust the spatial distribution of
a membrane parameter in order to reproduce a given APD
map in a coupled tissue. The method was applied to an
atrial model with randomly generated APD maps with con-
trollable maximum APD gradient. The adjustable local pa-
rameter was the conductance of the Ik acn current. Con-
vergence was found to be faster when the maximal gradient
was less steep and when tissue conductivity was reduced.

This algorithm provides a tool to automatically gener-
ate arrhythmogenic substrates with controllable repolar-
ization gradients and possibly incorporate experimental
APD maps into computer models.

1. Introduction

The action potential duration (APD) of a cardiac cell
estimates the duration of its refractory period. APD dis-
persion may result from regional electrophysiological dif-
ferences possibly aggravated by the remodeling induced by
successive episodes of arrhythmia. Steep gradients in APD
promote conduction blocks and functional reentries. How-
ever, in a tissue where cells are coupled through gap junc-
tions, electrotonic currents tend to reduce the differences
in APD between neighboring cells [1-3]. This means that
the distribution of APD measured in a tissue may signif-
icantly differ from the distribution of intrinsic APD that
would have been observed if the cells were uncoupled.

In computer models of cardiac arrhythmia, APD disper-
sion is introduced by designing a spatial profile of intrinsic
properties of cardiac cells. Typically, the spatial distribu-
tion of a parameter is used as an input of the model. The
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question arises whether that parameter distribution can be
determined from the APD map in the coupled tissue. De-
fauw et al. proposed a Gaussian Green’s function model
and a deconvolution approach to address this problem [4].
We solved analytically this problem in a toy model assum-
ing that the APD gradient was not too steep [5]. Here,
we implemented and validated a computational approach
in which the parameter distribution is iteratively updated
to reproduce a target APD map.

2. Methods

2.1. Problem statement

In the framework of a monodomain model of cardiac
tissue, let us consider that the membrane model depends
on a local parameter k£ that can vary within the range
[kmin,s kmax)- This parameter could be an ion channel con-
ductance, an ionic concentration, or a normalized parame-
ter describing the transition between normal and diseased
tissue, but is assumed not to affect intercellular coupling
(gap junction conductances). After spatial discretization,
tissue configuration is described by a vector k whose size
is the number of nodes in the mesh.

Due to the non-uniform distribution of &, the simulated
APD map is also non-uniform. The forward problem con-
sists in computing by simulation the APD map (a) as a
function of k

a= aforw(k; G) . (D

Because of electrotonicity, APD distribution depends not
only on k but also on intercellular coupling matrix G.

Assuming that the coupling is known, the inverse prob-
lem consists in recovering the parameter distribution k that
would reproduce a given APD map agarget

k = af_oiw(atarget; G) ) (2)

provided that the solution exists and is unique, i.e. aforw
is invertible. Uniqueness of the solution has been proved
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in a simple analytical model [5] and is also guaranteed (al-
though not easy to estimate) if the APD map in the coupled
system can be written as the convolution of the intrinsic
APD map with a spatial (e.g. Gaussian) filter [4].

2.2. Parameter identification

The inverse problem is equivalent to solving the equa-
tion asorw (k; G) — agarger = 0. Our approach will rely
on the fact that the problem is easily solved when cells are
uncoupled (G = 0; see next subsection). A first approxi-
mation k(¥ is obtained by neglecting electrotonicity:

k(o) = af;iw (atarget; O) . (3

Then, at iteration n, the parameter profile is updated using
the Newton-Raphson formula

-1
K+ — () _ (Daforw(km); 0))

% (@tore (€3 G) — Aarger ) > (4)

where the Jacobian Daforw(k(”); G) has been approxi-
mated by the (diagonal) Jacobian in the uncoupled tissue
Dag,. (k(™); 0) to avoid expensive computations. The it-
eration process stops when the 99th percentile of the ab-
solute error |asry (k™) — Agarget | falls below a tolerance,
typically 1 ms. This choice of termination criterion re-
duces overfitting since no regularization constraint on k
was used.

2.3.  Solving the uncoupled case

As a preprocessing step, the relation a = «(k) between
the parameter k and the APD (a) was studied in an isolated
cell. The function o was evaluated (using simulations) at
8 equally-spaced points in the interval [kpin, kmax]- The
number of points was then iteratively increased until the
maximal error between spline interpolation based on the
previous iteration and the new computed data points fell
below a threshold, typically 0.5 ms. This provided a piece-
wise polynomial interpolation for the function (k). The
monotonicity of «(k) was checked using the coefficient
of the polynomials. Spline interpolation on the same data
points (reflected across the diagonal) was used to compute
the inverse function k = a~*(a). The derivative o’ (k) was
obtained by analytically derivating the piece-wise polyno-
mial in each of its segments. To avoid out-of-bound errors,
when the argument of the function is out of the domain or
the range of «, the value at the bound is returned.

With these notations, we have:

af?)iw(atarget;o) = a_l(atarget) 4)
(Dagory (k;0)) ™1 = diag(e/(k))™!,  (6)

Figure 1. Example of inverse solution in an atrial model
with longitudinal conductivity of 4 mS/cm. (A) APD dis-
persion in the uniform case. (B) Random patchy regions.
(C) Generated APD distribution with a maximal gradient
of 2 ms/mm. (D) Solution to the inverse problem after ten
iterations. The spatial map of the repolarization parameter
gK,ACh 1s shown.

where the functions ! and o/ are applied element-wise
and ‘diag’ transforms a vector into a diagonal matrix.

2.4. Example in an atrial model

The algorithm was tested in a simple model of the atria
with rule-based fiber orientation [6]. Because the tissue
space constant affects the spatial variations in APD [1, 3,



4], three cases with different conduction properties were
simulated: the longitudinal/transverse conductivities were
set to 2/0.5 mS/cm, 4/1 mS/cm or 9/3 mS/cm, the latter
configuration representing the baseline values in [6].

The Courtemanche-Ramirez-Nattel membrane kinetics
was used, in which an Ix acn current was added. The for-
mulation was the same as Kneller et al. [7], except that the
pre-factor involving ACh was replaced by a conductance
gK,Ach. This parameter was taken as the control parameter
k responsible for APD variations. The range [kmin, kmax)
was set to [0, 15] for the estimation of the function a(k).

Given a spatial distribution of & = gk acn, normal
propagation from the sinus node was simulated. Since
Ik, ach can considerably reduce rate adaptation, only one
beat was simulated. APD was measured at every node us-
ing a threshold at —70 mV. This procedure constituted an
implementation of the function a = as,v (k; G).

2.5. Generation of APD maps

Generation of target APD maps was based on random
distributions of patches [8]. Four realizations were gener-
ated; one is shown on Fig. 1B. This defined a map uo(x)
such that uy = 0 inside the colored patches and vy = 1
outside.

In order to control the gradient, a Gaussian spatial fil-
ter was applied by solving an isotropic diffusion equation
Ou/ot = Awu with u(x,0) = up(x) and no-flux bound-
ary condition. The simulation code designed for the mon-
odomain equation was used to solve the diffusion equa-
tion on the same grid. Analytical calculations in 1D show
that the solution at time 7' = \2/2 provides a map in
the range [0, 1] with maximum gradient of approximately
(vV27A)~!.  Accordingly, the target APD map was set
to a(x) = ap + Aa - u(x,T), where ag = 105 ms,
Aa = 30 ms and T = Aa?/(4wy?). The gradient pa-
rameter v was 2, 3.5 or 5 ms/mm.

Boundary effects and wave front collisions also affect
the APD [9]. A correction was applied to the generated
maps to reduce overfitting in these regions. Otherwise, the
algorithm would try to “cancel” these natural variations.
Normal propagation was simulated in a uniform tissue with
mean APD = 120 ms and the resulting APD variations
were added to the target APD map. This assumes that
the parameter k£ does not significantly affect depolariza-
tion. Mathematically,

Aunif = aforw(ail(ao + AG/Q), G) (7)

Atarget — a(X) + aynif (X) — Qunif (X) (8)

where the bar denotes the mean. Figure 1A displays an
example of the map AAPD = a,pif(X) — aunif(X).

2.6.  Algorithm validation

The algorithm for parameter estimation was tested on
four realizations of the patchy heterogeneity pattern, three
APD gradients, and three conduction properties, which
makes 36 cases in total. Ten iterations of the algorithm
were computed in each case.

3. Results

Figure 1 shows an example of inverse solution obtained
using our algorithm. From a target APD map (Fig. 1C) that
took into account the correction for collision and boundary
effects (Fig. 1A), the spatial distribution of the repolariza-
tion parameter gi_acn was reconstructed. Note that thanks
to the correction, the resulting map (Fig. 1D) does not
seem to overcorrect the APD at the locations of wave colli-
sions (Fig. 1A). This parameter distribution may therefore
be used for other propagation patterns.

The convergence of the iterations is summarized in
Fig. 2. The error of the initial estimate ranged from 3 to
13 ms. The initial estimate was close enough to the so-
lution to ensure convergence of the Newton method pro-
vided that a solution existed. The first few iterations con-
siderably reduced the error. Convergence was slower when
tissue conductivity was higher and when the gradient was
steeper.

To give some perspective on how steep these target gra-
dients are, a cable with the same conductivity and dis-
cretization properties as the atrial model was simulated.
The parameter g acn was set to 9.5 (which corresponds
to APD = 105 ms) in the first half of the cable and 7 in the
second half (APD = 135 ms). The resulting maximal APD
gradient was 5.42 ms/mm (for a conductivity of 2 mS/cm),
3.83 ms/mm (4 mS/cm) and 2.55 ms/mm (9 mS/cm). This
could arguably be considered to be the steepest physiolog-
ical gradient (although in a cable the effect of anisotropy is
ignored).

4. Discussion

Our algorithm enables the determination of the spatial
distribution of a membrane kinetics parameter assuming
that we know: (1) the geometry and the conduction prop-
erties, (2) the APD map during normal rhythm, and (3)
which single parameter is the cause of APD dispersion. If
the APD map at two different heart rates was available,
the distribution of two parameters might be determined,
but that would require an extension of the algorithm. In
contrast, the method by Defauw et al. is less accurate but
directly estimates the intrinsic APD without hypothesis
about the ionic basis of APD variations [4].

In the test cases, the initial estimate (ignoring coupling)
was reasonably good but systematically underestimated
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Figure 2. Error computed as the 99th percentile of the ab-
solute error on the APD map along the iterations for three
different maximal APD gradients: 2, 3.5 and 5 ms/mm.
The longitudinal conductivity is 2 mS/cm (A), 4 cm/cm (B)
and 9 mS/cm (C). The error bars represent mean+standard
deviation over 4 realizations of the heterogeneity distribu-
tion. The horizontal dotted line shows the 1-ms tolerance.

APD gradients. A few iterations (2 to 5) were sufficient
to decrease the error below 1 ms provided that the maxi-
mum gradient was small. When the target maximum gra-
dient was larger than the steepest physiological gradient
obtained in a cable (discontinuity in the parameter), con-
vergence was slower (e.g. 5 ms/mm in Fig. 2B-C). An
indication of non-existence of the solution is when the al-
gorithm “hits the bounds” for the parameter £ (e.g. k¥ = 0O:
a negative value would be needed to create a steeper gradi-
ent). In that case, the parameter profile converges but the
error tends to zero only in regions of not-too-steep gradi-
ents.

5. Conclusion

APD heterogeneity creates a substrate for arrhythmias
that can be investigated in computer models. To facili-
tate the design of such simulation studies, our algorithm
provides a tool to automatically generate arrhythmogenic
substrates with controllable repolarization gradients.
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