
Optimization of Organ Conductivity for the Forward Problem of Electrocardiography 

Laura Bear1,2,3, Rémi Dubois1,2,3, Nejib Zemzemi1,4 

1IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université,  
Pessac- Bordeaux, France 

2Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France 
3INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France 

4CARMEN Research Team, INRIA, Talence, France 

Abstract 

This study presents an empirical approach to 
optimize conductivities within a torso model given 
simultaneous epicardial and body surface potential 
recordings. The conductivities of the lungs, skeletal 
muscle and torso cavity were estimated within a forward 
model by minimizing the relative error between computed 
and reference torso potentials using a standard gradient-
based approach. The sensitivity of this approach was 
evaluated over different levels of geometric error and 
signal noise, and the gradient of the cost function was 
determined using both 1) finite differences and 2) an 
adjoint method.  

All conductivities were accurately estimated (<10% 
difference in value) with up to 0.20 mV signal noise and 
all levels of electrode localization error (up to 2.56 cm) 
using a finite difference approach. While the adjoint 
approach was more computationally efficient, a finite 
difference approach was more stable across different 
signals and more robust to noise.  

1. Introduction

The forward problem of electrocardiography defines 
the relationship between epicardial and body surface 
potentials. This relationship is fundamental to the inverse 
problem (non-invasive imaging of cardiac electrical 
activity from body surface measurements). As the inverse 
problem is ill-posed, it is important that the forward 
model is identified accurately. 

In previous studies comparing directly recorded and 
forward computed body surface potentials in-vivo, it was 
shown that forward models incorporating inhomogeneous 
structures were more accurate than homogeneous models  
[1,2], improving both the magnitude and pattern of body 
surface potentials. Despite this, there still remained a 
difference between the forward and recorded body 
surface potentials. Although including further structural 

details into these forward models may improve them, 
such as by incorporating muscle fibre directions, it is 
often computationally and technically infeasible to do so. 

The conductivity values assigned to different organs 
in most forward models are based on three studies [3–5], 
with the values varying substantially between them. 
Previously, it has been shown that error in the 
conductivity values assigned can significantly affect body 
surface potentials, and in different ways depending on the 
organ [6]. 

Theoretically, the optimal conductivity for each 
region in a forward model can be found given a data set 
with simultaneous measures of epicardial and body 
surface potentials. That is, by defining one organ as 
having a constant conductivity, its ratio to other organ 
conductivities can be optimized to best match predicted 
and observed torso potentials. The basis of this approach 
is empirical rather than physiological. Nonetheless, 
identification of an optimized transfer matrix would 
provide a better forward model than both a uniform 
isotropic model and a more complex physiologically 
based one. This study examines such a method for 
optimizing conductivities using previously obtained in-
vivo experimental data [1]. 

2. Methods

2.1. Experimental data 

In-vivo, experimental data came from an anesthetized, 
closed-chest pig [1]. Epicardial and torso potentials were 
recorded simultaneously using an elastic "sock" (239 
unipolar electrodes) and flexible strips attached to the 
body surface (184 electrodes). Upon completion, the heart 
was arrested and MR images acquired. The heart was 
excised and perfusion-fixed. Epicardial electrode 
locations were captured with a multi-axis digitizing arm. 
MRI contrast markers placed on the “sock” and body 
surface strips were localized in the MR images and used 
to register electrode locations.  
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2.2. Geometric and computational model 

In order to define a test data set, a volume conductor 
model was developed using post-mortem MRI. An 
anatomically realistic generic model of a pig was 
customized to data clouds of the epicardial, lungs, fat and 
skeletal muscle surfaces, using a non-linear fitting 
procedure [7]. Linear-triangular surface meshes were then 
coupled together to create a finite element volume 
conductor model (Fig 1).  

Fig 1. Cranial view of the torso model. Regions include 
the epicardium (red) lungs (light blue), cavity (yellow), 
skeletal muscle (orange) and subcutaneous fat (dark blue). 

The torso domain is denoted by Ω, covering the volume 
between the epicardium and body surface.  

Ω = ∪𝑖𝑖∈{𝑓𝑓,𝑚𝑚,𝑙𝑙,𝑐𝑐} Ω𝑖𝑖 , 
where Ω𝑓𝑓 ,Ω𝑚𝑚 ,Ω𝑙𝑙 ,Ω𝑐𝑐 are the fat, skeletal muscle, lung and 
cavity volumes respectively. The conductivity in each 
region was defined as σ𝑓𝑓  = 0.04, σ𝑚𝑚  = 0.40, σ𝑙𝑙  = 0.05, σ𝑐𝑐  = 
0.22 mSmm-1, consistent with the literature [3-5]. The 
boundary of the torso domain is defined by 𝜕𝜕Ω = Σ ∪
𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒  , where Σ represents the epicardial surface and 𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒  
the external boundary of the body surface. We denote the 
torso potential in Ω by 𝑢𝑢𝑇𝑇. By solving Laplace’s equation 
over this volume using the finite element method, we 
define the linear relationship: 𝑑𝑑 = 𝐴𝐴ℎ. At each time step, 
reference potentials, d, at 180 electrode locations on 𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒  
were computed from the measured potentials, h on Σ. 

2.3. Optimization procedure 

The test data provides the potential values on both Σ and 
𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒 . Moreover, we know that the current flux over the 
body surface is equal to zero. In order to estimate the 
values of each organ conductivity, we construct the 
following quantity of interest. 

⎩
⎪
⎨

⎪
⎧I�σ𝑓𝑓 ,σ𝑚𝑚 ,σ𝑙𝑙 ,σ𝑐𝑐  � =  

1
2
‖𝑢𝑢𝑇𝑇 − 𝑑𝑑‖𝐿𝐿2(𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒)

2 ,

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑢𝑢𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 𝑠𝑠𝑜𝑜:

�
𝑑𝑑𝑤𝑤𝑑𝑑(σ𝑇𝑇∇𝑢𝑢𝑇𝑇) = 0, 𝑤𝑤𝑠𝑠 Ω,

𝑢𝑢𝑇𝑇 = ℎ, 𝑠𝑠𝑠𝑠 Σ,
σ∇𝑢𝑢𝑇𝑇 ∙ 𝒏𝒏𝑇𝑇  = 0, 𝑠𝑠𝑠𝑠 𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒  

By minimizing the cost function, I�σ𝑓𝑓 ,σ𝑚𝑚,σ𝑙𝑙 ,σ𝑐𝑐  �, we 

find the optimal values of the conductivity for all four 
organs. Here, the fmincon function of Matlab 2013b was 
used. By default, this function approximates the 
derivative of I over σ𝑖𝑖  for 𝑤𝑤 ∈ {𝑜𝑜,𝑚𝑚, 𝑠𝑠, 𝑐𝑐} using a finite 
difference approach (GradFD).  

In the second half of this paper, we compare GradFD to 
an alternative method, Gradadj, where the derivative of I 
over σ𝑖𝑖  is computed directly giving 

𝜕𝜕𝜕𝜕
𝜕𝜕 σ𝑖𝑖

�σ𝑓𝑓 ,σ𝑚𝑚 ,σ𝑙𝑙 ,σ𝑐𝑐� = ∫ 𝜕𝜕 u𝑇𝑇
𝜕𝜕 σ𝑖𝑖𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒

(u𝑇𝑇 − 𝑑𝑑)
As the derivative of u𝑇𝑇 cannot be computed directly, 

an adjoint method was used. That is, 𝐻𝐻1(Ω) is denoted by 
the set of functions ∅: Ω → ℝ, such that ∫ ∅2Ω < ∞ and 

∫ |∇∅|2Ω < ∞. 𝐻𝐻Σ1(Ω) is also denoted by the set of 

functions 𝜓𝜓 ∈ 𝐻𝐻1(Ω) such that 𝜓𝜓 Σ� = 0. For every
�σ𝑓𝑓 ,σ𝑚𝑚 ,σ𝑙𝑙 ,σ𝑐𝑐 ,𝑢𝑢, 𝜆𝜆� ∈ (ℝ+)4𝐻𝐻1(Ω)  × 𝐻𝐻Σ1(Ω), the 
Lagrangian function is defined as follows  

𝐿𝐿�σ𝑓𝑓,σ𝑚𝑚,σ𝑙𝑙 ,σ𝑐𝑐 ,𝑢𝑢, 𝜆𝜆� =
1
2
‖𝑢𝑢𝑇𝑇 − 𝑑𝑑‖𝐿𝐿2(𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒)

2 + � σ𝑇𝑇∇𝑢𝑢∇𝜆𝜆
Ω

 

For every  𝜆𝜆 ∈ 𝐻𝐻Σ
1(Ω) this gives 

I�σ𝑓𝑓 ,σ𝑚𝑚,σ𝑙𝑙 ,σ𝑐𝑐  � = 𝐿𝐿�σ𝑜𝑜, σ𝑚𝑚, σ𝑠𝑠, σ𝑐𝑐, 𝑢𝑢, 𝜆𝜆� 
The gradient of I with respect to σ𝑖𝑖  is then given by 

⎩
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⎪⎪
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,

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 𝑠𝑠𝑜𝑜:

�
𝑑𝑑𝑤𝑤𝑑𝑑(σ𝑇𝑇∇𝜆𝜆) = 0, 𝑤𝑤𝑠𝑠 Ω,

𝜆𝜆 = 0, 𝑠𝑠𝑠𝑠 Σ,
σ∇𝜆𝜆 ∙ 𝒏𝒏𝑇𝑇  = −(𝑢𝑢𝑇𝑇 − 𝑑𝑑), 𝑠𝑠𝑠𝑠 𝛤𝛤𝑒𝑒𝑒𝑒𝑒𝑒  

This method allows us to obtain the derivative of the 
objective function over the four conductivity parameters, 
by only solving two Laplace equations: The first is the 
state equation to obtain u𝑇𝑇 and the second is the adjoint 
equation to obtain 𝜆𝜆. The derivative is then obtained by 
integrating the scalar product of the gradients of u𝑇𝑇 and 𝜆𝜆 
over each of the four organs domains. 

2.4. Method of analysis 

The sensitivity of the optimization procedure was 
tested by varying levels of signal noise (SN) on d, and 
torso electrode localization error (LE). SN was created 
using a random number generator with a standard 
deviation (SD) from 0.002 to 0.512 mV. The direction of 
LE for each electrode was defined by picking a random 
point on the surface of a unit sphere, with the distance 
defined with a mean from 0.02 to 2.56 cm across all 
electrodes. Conductivities were optimized for each level 
of error, and for six different time points spanning 
ventricular depolarization. In addition, conductivities 
were optimized combining a SN of 0.05 mV and a LE 9 
mm. These values were estimated to be the level of error 
in the original data set. 

The initial conductivities used to start optimization 

 

 

  



were defined using a Monte Carlo simulation. That is, 
simulations were run using four values of each 
conductivity (σf kept constant at 0.04 mSmm-1) ranging 
from ±50% of the max/min values as compiled from the 
literature. The conductivities resulting in the lowest cost 
function were used as the initial conditions.  

The accuracy of optimized conductivities was 
evaluated using the relative error (RE). In addition, the 
speed of computation was evaluated using the number of 
iterations for computation. To determine differences, a 
paired t-test was used for normally distributed data, and a 
two-sided Wilcoxon signed rank test for non-normal. 
Statistical significance was accepted for p < 0.05. 

3. Results

3.1. Sensitivity analysis 

Given the correct fat conductivity, the Monte Carlo 
simulations yielded initial conductivities of σl = 0.06, σm = 
0.35, σc = 0.13 mSmm-1, for all levels of signals noise, 
vest error, and for all time steps. In the following 
analysis, GradFD was used to define the gradient during 
optimization.  

Fig 2. RE in conductivity over (a) SN and (b) LE. 

As expected, the accuracy of optimization decreased 

with increasing levels of SN and LE (Fig. 2). All three 
conductivities were accurately estimated (RE < 10%) for 
up to 0.20 mV SN and for all levels of LE. The accuracy 
was also dependent on the signal used as demonstrated by 
the large SD of the results for each error level.  

Table 1 Optimized conductivity values and RE when 
combining SN of 0.05 mV and LE of 0.9 cm, presented as 
median [inter quartile range].  

σm σl σc 

RE (%) 1.4 [2.8] 1.7 [1.9] 1.0 [1.9] 

Conductivities optimized combining SN (0.05 mV) 
and LE (9 mm) were accurately estimated for all signals 
used (Table 1). 

Fig 3. Comparison of GradFD and Gradadj over SN using 
(a) mean RE in conductivity and (b) number of iterations 
for computation. 

3.3.  Adjoint method for gradient 

The accuracy and speed of optimization using an 
adjoint apparoach to compute the gradient (Gradadj) were 
compared to GradFD. Given results are more sensitive to 
it, this comparison was performed over different levels of 
SN. Fig. 3a presents the mean RE in conductivity against 
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increasing SN for both methods. For all error levels 
except the greatest, the conductivities were more 
accurately estimated, and the SD smaller using GradFD. 
Overall, Gradadj resulted in a significantly larger average 
error in conductivity (p < 0.0043) than GradFD. 

Fig 3b shows the number of iterations necessary to 
converge to a solution for each method. From this, we can 
see Gradadj is substantially more computationally efficient 
than GradFD, requiring 45 to 64 fewer iterations to 
converge to a solution for all levels of signal noise. 
Interestingly, the number of iterations remains relatively 
stable with increasing noise levels for both methods.  

4. Discussion

In this study, we have presented a method for 
optimizing the conductivity of different organs in a torso 
model, given simultaneous recordings of epicardial and 
torso potentials. Here, conductivities of 3 organs were 
successfully computed under typical signal noise and 
geometric error levels. A sensitivity analysis revealed the 
conductivities could be computed to within 10 % of their 
true values when the standard deviation of signal noise 
was less than 0.20 mV and the mean electrode 
localization error less than 2.56 cm.  

The accuracy of the final conductivity values was 
dependent on the signal selected for optimization, 
demonstrated by an increase in SD with error. Further 
analysis showed that signals taken near the start and end 
of depolarization were typically less accurate than those 
near the middle of depolarization. Thus, care must be 
taken when selecting the signals used for optimization as 
the method is dependent not only on the noise level but 
the signal-to-noise ratio itself. 

Generally, optimization is more robust, and faster 
when you include directly computed gradients. Here, 
while Gradadj was more computationally efficient than the 
standard GradFD approach provided by Matlab, it was less 
robust to signal noise. Despite having not converged to 
the exact conductivity using Gradadj, the final cost 
function values were not largely different from those 
using GradFD, where conductivities accurately converged. 
Thus, we could assume the gradient calculated using 
Gradadj typically resulted in small step sizes, and the 
optimization process was exited due to a step size or a 
change in cost function below threshold. Changes to these 
thresholds would increase the computation time, with no 
guarantee of a substantially improved convergence. 

Previous studies have shown structure-based 
inhomogeneous models have proven to be less robust 
than homogeneous models in inverse simulations [8]. 
That is, although more accurate physiologically, 
inhomogeneous models are also more prone to error. 
However, here we have shown that an optimized transfer 
matrix can be identified, providing a better forward model 
than a uniform isotropic volume conductor, and 

potentially more robust inverse solutions than complex 
physiologically based inhomogeneous models.  Thus 
these methods could be of clinically to improve current 
electrocardiographic techniques.  

Whilst a full set of epicardial potentials is typically 
unavailable clinically, an electrical current could be 
applied to the heart in a known location during isoelectric 
periods. Given body surface potentials recorded 
concurrently and patient-specific MRI, the organ 
conductivities within a patient could theoretically be 
estimated. Further analysis in this direction is currently 
underway using the experimental data outlined. 
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