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Abstract 

This study aimed to develop a nonlinear support vector 
machine (SVM) model to detect ischemic events based on 
a dataset of QRS-derived and ST indices from non-
ischemic and acute ischemic episodes. 

The study included 67 patients undergoing elective 
percutaneous coronary intervention (PCI) with 12-lead 
continuous and signal-averaged ECG recordings before 
and during PCI. Fifty-four indices were initially 
considered from each episode. The dataset was randomly 
divided into training (80%) and testing (20%) subsets. 
The training subset was used to optimize the SVM 
parameters algorithm and for determining the most 
important statistically significant indices, by using 
repeated k-fold cross-validation (with N=25 repetitions 
and k=5). The described procedure was run on 25 
randomized training/testing subsets to assess the average 
performance.  

On average, the most important indices were the QRS-
vector difference and the ST segment level at J-point + 60 
ms computed from the synthesized vector magnitude, and 
the summed high-frequency QRS components of all 12 
leads at 150 – 250 Hz band. The performance of testing 
was: classification error = 12.5(8.3 - 16.7)%, sensibility 
= 83.3(75.0 - 91.7)%, specificity = 91.7(83.3 - 91.7)%, 
positive predictive value = 90.9(83.0 - 92.3)% and 
negative predictive value = 85.7(80.0 - 91.7)%. The 
method used to construct the SVM model is robust enough 
and looks promising in detecting acute myocardial 
ischemia and myocardial infarction risk. 

1. Introduction

Detection of acute myocardial ischemia is habitually 
analysed by the predictive power of ST-segment 
deviation in the standard 12-lead ECG [1]. However, 
other indices associated with the ventricular 
depolarization have also been considered to improve the 
diagnosis of ischemia. These QRS-derived features 
include the R-wave amplitude change [2], QRS area, 

QRS-vector difference [3] and high-frequency QRS 
(HFQRS) [4], computed on 12-lead ECG, the 
vectorcardiogram (VCG) or signal-averaged ECG 
(SAECG). Most of them have been individually studied, 
thus it is not clear what the relationship among them are. 
It has been found that several parameters are closely 
interrelated, providing in consequence little different 
value than others  that have proven to be most significant 
in identifying patients with myocardial ischemia at risk of 
suffering heart attack.  

Machine learning techniques have been used as 
statistical models for classification in many areas. Among 
these techniques, support vector machines (SVM) have 
been proved as an efficient classifier in diverse fields, 
including medicine [5]. SVM models can include 
individual depolarization and repolarization indices to 
take decisions about normal and ischemic events. The 
amount of QRS-derived recently studied and the 
traditional ST-segment deviation as markers of 
myocardial ischemia can be integrated in a SVM model 
used to detect these events. The aim of this study was 
developing a nonlinear (Gaussian kernel) support vector 
machine model to detect ischemic events based on a 
dataset of QRS-derived and ST indices from non-
ischemic and acute ischemic episodes.  

2. Methods

2.1. Population and data acquisition 

Sixty-seven patients from the STAFF III database [6] 
were included in the study. The database comprises a set 
of records from 104 patients with stable angina pectoris 
who underwent elective percutaneous coronary 
interventions (PCI) at the Charleston Area Medical 
Center, WV. The occlusion periods were considerably 
longer than those in usual coronary angioplasty 
procedures due to the treatment protocol that included a 
single prolonged occlusion instead of a series of brief 
occlusions in each artery, a method used before coronary 
stents were widely available. The recordings at the end of 
the occlusions are a very good model of hyper acute of 
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transmural ischemia. Inclusion criterion was occlusion 
duration of at least 3-min and strict criteria concerning the 
noise level in each of 12 leads of the ECG signal [7]. 
Balloon inflation periods ranged from 2.1 to 9.9 minutes 
(mean 4.7 min). 

Continuous 9-leads ECG’s (I, II, III (Mason-Likar 
electrode positions) and V1-V6) were recorded at 1 kHz, 
with 0.6µV of amplitude resolution with equipment 
provided by Siemens-Elena (Solna-Sweden). The three 
augmented aVL, -aVR and aVF were computed from the 
limb leads. For each patient, two ECG epochs were 
analysed for posterior signal averaging: (i) a pre-inflation 
ECG that was acquired during 5 minute before any 
catheter insertion, and (ii) the occlusion ECG recording 
which commenced about 1 minute before balloon 
inflation and continued during the inflation period and 
ended at least 3 minutes after deflation. 

2.2. Signal averaging and data selection 

Continuous ECG signals were averaged to ensure low 
noise level using two methods. For pre-inflation (control) 
ECGs conventional ensemble averaging was applied, 
whereas, for the occlusion ECG epoch an exponential 
averaging recursive technique was employed to track 
changes in QRS morphology [4]. Noise level was 
estimated in each lead of the bandpass filtered signal-
averaged beat as the RMS value during 100 ms, starting 
100 ms after QRS end [8]. The inclusion noise criteria 
were a noise level 0.75 µV of lower for each of the 12 
individual leads and similarity of noise level, within 0.35 
µV, between the control beat and the end of the occlusion 
(PCI) beat.  

For each patient two SAECG beats were selected to 
assess the effect of acute myocardial ischemia provoked 
at the end of the occlusion period respect to baseline. The 
baseline beat (control) was selected from the pre-inflation 
ECG recording within the noise criteria. As occlusion-
ischemic (PCI) ECG beat, the averaged beat at the end of 
balloon inflation was selected, since maximal myocardial 
ischemia could be expected to occur in the last part of the 
PCI procedure. However, if the noise criterion was not 
fulfilled then the previous averaged beat up to 20 sec 
backwards was chosen. 

2.3. Set of ECG indices 

The database is composed of 67 patients. For each 
patient, there is a total of p = 54 non-invasive measures 
from the SAECG for each episode (control and PCI 
period). Therefore, the dataset is composed of a total of N 
= 134 p-dimensional observations, belonging to one of 
two classes (control or PCI) balanced on the number of 
observations is concerned. The SAECG measures are 
described in Table 1. ST60 was calculated in each leads at 

ST-J point + 60 ms and ST60VM was computed from the 
vector magnitude. R-wave amplitude (ampR) for each 
lead, as ST60, was measured using the PR segment as the 
isoelectric level. QRSVD was computed from difference 
between the PCI and control QRS complexes areas in the 
VCG [3]. The QRS was band-pass filtering at the band of 
150 to 250 Hz, using a Butterworth filter in a forward-
backward fashion; then, HFQRS indices were obtained 
from the RMS value of the filtered QRS [4]. 

Table 1. SAECG-derived indices from each episode. 

Index n =12 indices, 1 per lead 
ST60 ST-segment deviation J+60 ms 
QRSA QRS-complex area 
ampR R-wave amplitude 
HFQRS RMS of high-frequency QRS 

1 index, sum of 12-leads 
Sum_ST60 ST60 sum, ∑ 𝑆𝑆𝑆𝑆60𝑖𝑖𝑛𝑛

𝑖𝑖=1  
Sum_QRSA QRS area sum, ∑ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖𝑛𝑛

𝑖𝑖=1  
Sum_ampR ampR sum, ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1  
Sum_HFQRS HFQRS sum, ∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛

𝑖𝑖=1  
1 index, from vector magnitude, VCG 

QRSVD QRS-vector difference 
STVM60 ST60 vector magnitude 

2.4.  SVM model 

A support vector machine with a Gaussian radial basis 
function (RBF) kernel was used to build the prediction 
model, based on the recommendations of several studies 
[5,9]. Among several options, a strategy for efficient 
selection of the most important statistically significant 
variables was chosen. 

Feature selection 

Pre-processing of the set of variables firstly include a 
z-score transformation in order to normalize the data with 
mean equal to zero and standard deviation equal to one. 
This transformation facilitates the training algorithm to 
give the same weight to each variable. Secondly, the 
Wilcoxon signed-rank test was applied to compare if 
related variables between the episodes are different. A p-
value < 0.05 was considered statistically significant. Out 
of the 54 variables used, 34 (63%) obtained p <0.05 and 
21 (38.9%) p <0.001. 

Then, the statistically significant variables were sorted 
according to their discriminatory power (high to low). 
The selection of the final subset of variables to construct 
the model was performed by forward stepwise selection 
algorithm. This procedure allows considering the 

 

 

  



interaction between each of the variables and their effect 
on model performance. Here, the training set is used to 
select the variables and adjust the SVM model. This 
action of variable selection is incorporated within the 
cross-validation procedure for SVM parameters 
optimization algorithm described below. 

Optimization of the model parameters 

The grid search method with repeated k-fold cross-
validation was used to optimize SVM algorithm 
parameters and generate the final prediction model. 
Briefly, the training observed subset D (about 80%) is 
randomly subdivided in k partitions for cross-validation. 
Each partition includes a training (L) and a validation (T) 
subset and predictive model f is generated for each value 
of the selected variables. Then, the model is applied to T 
and the procedure is repeated k-folds with k = 5. The 
procedure is repeated Nrep = 25 times, with a random 
subdivision of D in k different partitions each time and 
the errors are averaged. The model parameters were 
adjusted minimizing the misclassification rate function. 

3. Results and discussion

Figure 1 (a) shows the evaluation results of the quality 
of training and how they are affected by having different 
sets of training/validation. Variability in the cross-
validation error for the set of models generated with the 
best combination of parameters was low and also similar 
in the different training subsets tested (about 1% standard 
deviation). This shows the robustness of cross-validation 
methodology against different training/validation 
partitions of the training subset. Furthermore, the fact that 
variability is similar between different subsets of training 
indicates good parameter setting quality performed.  

The assessment of the prediction model in terms of 
misclassification was done from the subset of 
independent testing data. Figure 1 (b) presents a 
description of the error distribution in cross validation 
and testing with independent data, evaluated on 25 
different training/testing partitions. On average, the 
misclassification with independent data (in testing) was 
12.5%, slightly higher than the error average obtained in 
the cross-validation (11.7%), as expected. However, the 
variability of the error was higher (20% range) than that 
observed in cross validation. This high relative variability 
may due to the low resolution in the error function due to 
the small number of observations included in the subset 
of testing (24 in total, 12 controls and 12 PCI). Note that 
each wrongly classified observation represents a variation 
in error testing with independent data of 4.16%. Anyhow, 
we have used other more appropriate measures than the 
classification error to characterize the ability of 
generalization of a model. 

Figure 1: (a) Classification error (mean, SD) computed on 
the 25 repetitions of the cross-validation for each 
randomized training/testing subsets. (b) Distribution of 
the mean error in cross-validation and the classification 
error for testing on all the 25 training/testing partitions. 

On average, the most important statistically significant 
variables were QRSVD, STVM60 and Sum_HFQRS, in 
that order. The QRSVD variable was selected in all tested 
partitions, STVM60 in 19 partitions (76% of the time) 
and Sum_HFQRS 12 times (48%). Figure 2 summarizes 
the maximum number of selected variables in each tested 
partition. 

Figure 2. Number of statistically significant variables 
selected as the most important in different partitions. 

Table 2 summarizes the sensitivity (SE), specificity 
(SP), positive predictive value (PPV) and negative 
predictive value (NPV) for the tested partitions. These 
four measures are more appropriate to characterize the 
final performance of the models that the classification 
error. The values of the quantities are quite good, 
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considering the small number of observations of the 
validation set, since that this limitation penalizes more 
those four measures than the classification errors. In this 
case, the resolution is lower, around 8%, because these 
measures are calculated on each class of the data subset. 
Therefore, the fact that the values of SE, SP, PPV and 
NPV reported in the table are not optimistic may be due 
to the small number of observations that make up the 
validation subset rather that the ability of models to 
separate observations of different classes. 

Table 2. Percentiles 50 (25, 75) in (%) calculated on the 
25 partitions training/validation tested. 

Statistical measures SVM classification 
SE 83.3 (75.0, 91.7) 
SP 91.7 (83.3, 91.7) 
PPV 90.9 (83.0, 92.3) 
NPV 85.7 (80.0, 91.7) 

On average, the models generated following this 
strategy had a probability of about 91% in predicting 
ischemia and a probability of 86% in the no ischemic 
observations. We also believe that these values are highly 
reliable, due to the robustness of the procedure to adjust 
the algorithm parameters and determine the most 
important variables.  

4. Conclusion

In this work the power of support vector machines 
have been used for predicting myocardial ischemia in a 
group of patients with occlusion of coronary arteries due 
to a PCI procedure. The feature selection was done using 
a univariate statistical test and an algorithm for selecting 
the most important variables sequentially, with SVM and 
cross-validation. The task of feature selection to identify 
the most important variables has been crucial because the 
presence of noise or redundant variables, and to avoid the 
known problem of high dimensionality. The values of SE, 
SP, PPV and NPV obtained are quite promise, and 
reliable, considering the values reported in previous 
studies. Finally, we believe that support vector machine 
models, with the strategy of including the most important 
statistically significant variables, could have clinical 
interest to identify patients in risk of myocardial 
infarction. 
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