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Abstract

Digital analysis of the bio-electrical signals allows us to
obtain valuable information for clinical and research pur-
poses. Despite current devices record and store the digital
electrical signal, in some cases only a printout version is
available. Although previous research focused on algo-
rithms to digitize a scanned version of the printed signal,
nowadays a color image of the printout can be immediately
obtained with a cell phone. Most of these algorithms dig-
itize the signals after manually selecting from the whole
image one sub-image per signal to digitize. Here, pro-
pose a procedure to automatically crop the image to get
as many sub-images as signals are in the ECG printout.
First, the perspective distortion is corrected. Then, an im-
age I mainly containing the grid, is obtained from a trans-
formation of the RGB space to another colorspace tak-
ing advantage of the grid chromatic characteristics. The
grayscale image, G, and I are morphologically processed
to emphasize both signal and grid in G, and just grid in I.
Boundaries between contiguous signals are set by means
of projections and morphological operations.

Thirty one phone camera color images of 12-lead-ECG
printouts were used for evaluation. Experiments were con-
ducted with images with different spatial resolutions and
quality factors according to the jpeg compressor. Our pro-
cedure worked correctly when the tracing of consecutive
leads did not overlap in the amplitude axis and the spa-
tial resolution and the quality factor were higher than 0.25
(one-fourth of the original size) and 40%, respectively.

1. Introduction

Digital biomedical signal processing allows to automat-
ically extract useful information to support clinicians’ di-
agnosis or treatments. However, the digital signals are not
always available because they are stored on paper or in a
digital proprietary format. For those signals printed on pa-
per, it would be very useful to have an automatic procedure

converting the printed signal in a digital signal.
Previous scientific research has proposed procedures

to digitize the biomedical printed signals, mainly elec-
trocardiograms (ECG) or electrograms, from images ob-
tained with a flat scanner [1–3]. These digitalization pro-
cedures required individual images for each lead (signal
tracing), and also that the original grid geometry is pre-
served. Hence, each lead was either manually separated or
the original image only covered one lead. The flat scanner
is not always accessible and the current cell phone or tablet
camera allows taking a RGB image of the signal printouts
with resolution as good as the scanner image. In this con-
text, Mitra et al. proposed an algorithm to extract and an-
alyze ECG features from cell phone images, but they did
not take into account the perspective distortion introduced
by the camera position and the automatic cropping of each
lead for the digitalization [4].

Here, we propose a procedure to automatically crop a
color photo of an ECG printout in as many sub-images
as signals are in the picture. The ECG grid can be solid
or dotted, and can also have different colors. Our proce-
dure starts by correcting the perspective distortion. Then,
a stage based on projections and mathematical morphol-
ogy [5] allows to find the boundaries between contiguous
signals. Finally, different methods available in the litera-
ture can be used to digitize every individual signal [3].

The structure of this paper is as follows. In Section 2,
the perspective correction procedure is detailed. Section 3
explains the procedure to cancel the grid. Boundaries for
image cropping are found in Section 4. Section 5 presents
the results of the auto-cropping procedure on a set of ECG
images obtained with a conventional phone camera. Fi-
nally, conclusions are summarized.

2. Perspective distortion correction

In an ECG, the electrical activity of the heart is repre-
sented in a grid with the horizontal/vertical direction cor-
responding to time and amplitude, respectively. When the
image is taken from a flat scanner, the paper and focal
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plane are parallel and theoretically no distortion is intro-
duced in the scanned image. However, when holding man-
ually a cell phone, it is difficult that the paper and the cam-
era focal plane are parallel and then some distortion occurs.
This kind of distortion is evidenced because grid lines rep-
resenting the same feature (time or amplitude) are not par-
allel, and perpendicularity between original grid lines is
also lost. A solution to this issue is to estimate the per-
spective transformation applied to the ideal image and then
reversing this transformation so that perpendicularity be-
tween grid lines is preserved as much as possible.

A simple perspective transformation can be modeled as
a linear transformation between pairs of points in two im-
ages according to matrix H. This way, P = HR, where R is
a matrix storing the Cartesian coordinates of a set of points
in the non-distorted image. Matrix P has the Cartesian co-
ordinates of the same set of points of R in the transformed
(distorted) image. Algorithms like Direct Linear Trans-
form [6] just require four correspondences to find matrix
H, with the restriction that no 3 points can be collinear.

Our procedure for perspective correction makes use of
the properties of the printed ECG grid and requires the in-
tervention of the user to mark four feature points in the
distorted image. These points correspond to the intersec-
tion points of two pair of perpendicular grid lines, which
delimit a rectangle in the printed grid. Thus, the user pro-
vides the four vertices of a quadrilateral in the image taken
by the camera, and they are stored in P. The ideal rectan-
gle (vertices in R) is built such that its sides pass through
the midpoint of every side in the quadrilateral.

Then, the homography matrix H is estimated from P and
R, and the inverse transformation H−1 is applied to the dis-
torted image. Fig. 1 (a) shows the distorted image and the
quadrilateral built with the vertices pinpointed by the user.
The image after perspective correction is in Fig. 1 (b). In
this work, the function FindHomography of the OpenCV
library [7] has been used to estimate H, and perspective-
Transform to get the image I without perspective distor-
tion. We will call IR to the grayscale conversion of I .

3. Grid cancelation

Many algorithms for ECG signal extraction assume that
the image only contains the tracing of one signal. Since the
perspective correction algorithm needs at least four points,
the user should mark four points per signal. To avoid so
much user intervention, we propose an automatic proce-
dure to crop the image obtained from Section 2 in the same
number of sub-images as tracings from different signals.

Our procedure to find the boundaries between signals
starts by obtaining a binary image just containing the sig-
nal tracings. From a conceptual point of view, this image
can be obtained by canceling the pixels associated to grid
lines, which mostly are reddish or green (though other col-

(a) (b)

Figure 1. (a) Distorted original photograph; (b) Corrected
image. Artificial quadrilateral and rectangle are in blue.

ors are also possible). Since pixels belonging to both sig-
nal tracing (blank ink) and paper (white) have achromatic
colors, an strategy to find the grid lines is to determine
chromatic pixels. Though this is a theoretically valid rea-
soning, it does not hold when the image is saved by the
smartphone. This, along with the fact that the camera lens
can also add some chromatic distortion, makes it neces-
sary a transformation from the RGB space to another space
where the grid color is emphasized and therefore pixels be-
longing to the grid are more easily determined.

Since both pixels of grid lines and signal tracing have
the lowest intensity, we propose to emphasize them by ap-
plying a morphological bottom-hat to IR. For this purpose,
the size of the structuring element (SE) must be higher than
the size of the elements to highlight. Though this size can
be arbitrarily large, we have chosen it to be the size of the
larger square in the ECG graph paper. It is computed from
the number of pixels between consecutive grid lines, as
explained in the next paragraph. After morphological pro-
cessing, contrast is enhanced so that 2% of the transformed
intensity values are saturated. The resulting image, with
highlighted grid and tracings, is named Igt.

To find the average number of pixels between consecu-
tive grid lines, the horizontal projection of IR is computed
and normalized to a maximum of 1, obtaining ph. Maxima
of ph are computed, and those not exceeding a threshold
are filtered. The threshold is not constant and it is obtained
using a median sliding window (length 0.1 times the pro-
jection length) on ph and adding an offset (experimentally
set to 0.1). The distance between consecutive maxima will
determine the number of pixels between consecutive hori-
zontal grid lines, so the average distance δgl is computed.

Since the image can have shadows and so the intensity
is not uniform, a normalization of the RGB colorspace to
the rgb colorspace [5] is explored. The rgb colorspace has
the advantage of representing chromaticity invariantly with
respect to intensity. Components r and g of the normal-
ized space should be adequate to determine the grid pix-
els in reddish and green grids, respectively. Other space
colors separating intensity and chroma were also consid-
ered. We experimentally checked that the Cr component
of the Y CbCr colorspace allowed us to determine the red-
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Figure 2. Example of the grid cancelation process on a
fragment of the ECG: (a) I; (b) Igt; (c) Ig; (d) It.

dish grid better than r, since less pixels belonging to signal
tracing were identified with Cr. Then, Cr is chosen for
reddish grids and g for green ones. For other grid col-
ors, the relative color difference (rcd) is used [8]. Then,
Cr, g or rcd is chosen (depending on the grid color) and
the top-hat morphological operator is applied with a flat,
disk-shaped SE of diameter δgl. Image Ig , which mainly
preserves the grid, is obtained after contrast enhancement.

Finally, image subtraction of Igt and Ig is computed to
get It. Fig. 2 shows the images obtained along the cancela-
tion grid process. Note that this procedure has the side ef-
fect of producing gaps in the tracing, as shown in Fig. 2 (d).

4. Segmentation boundaries

The goal is to find a set of horizontal lines that best seg-
ment I in nl subimages, each containing only one signal.
To find the position of these lines, that we call segmen-
tation boundaries, our approach considers projections [5]
and maxima. To get maxima with high contrast, images Ig
and It are thresholded by the scheme in [9], resulting in
binary images BWg and BWt, respectively.

First, the horizontal projection of BWt, denoted as
phBWt

, is obtained. Note that the highest maxima of this
projection will be at the central position of the signal trac-
ings. Therefore, boundaries must be located between two
adjacent maxima and out of the range of the tracings.

As mentioned in Section 3, the grid cancelation may
cause that signal pixels are in the background of BWt,
producing undesired gaps (minima) in phBWt

. To prevent
these minima from setting a false boundary, we propose to
fill them by applying a closing to phBWt

. Since the size of
these minima is related to the width ls of the grid lines,
we consider that ls is an adequate length for the flat SE.
The ls value is estimated from the vertical projection of

(a)

(b)

Figure 3. (a) Projection and individual reconstructions
(red), one per maximum considered as a valid candidate;
(b) Projection, signal limits (red circles) and boundaries
(black crosses) associated to the image in the left panel.

BWg , named pvBWg
. The idea is to compute the area a0

under pvBWg
and monitor its changes when applying open-

ings with increasing size of the SE. Thus, successive open-
ings on pvBWg

using SEs of increasing size are performed,
and the corresponding area is calculated. When the area is
for the first time lower than 0.1a0, then the corresponding
SE length is considered to be an estimation for ls.

Next, the closing of phBWt
with SE of length ls is ob-

tained in phcBWt
, and maxima are searched to find the cen-

tral position of the signal tracings. A morphological mea-
sure named contrast extinction value (CEV) was com-
puted [10] for each maximum. We consider a maximum
is a valid candidate to be the central point of a signal trac-
ing when its CEV is greater than 10% of the highest CEV.
The CEV of a maximum is the maximal size of a height
filter such that the maximum still exists after the filtering.

Since boundaries should be placed between tracings of
two consecutive signals, the range of rows [rini, rend] cov-
ered by every signal is next obtained. For this aim, we pro-
pose to perform nl morphological reconstructions [11] of
phBWt

using one marker per reconstruction. The marker is
just one point at the position of each maximum considered
as a valid candidate. This process is shown in Fig. 3 (a),
where nl = 3 reconstructions (red color) were obtained.

The nl − 1 boundary points are obtained by computing,
for every reconstruction i, the edges riini and riend corre-
sponding to the first and last value greater than zero. Next,
all reconstructions from two consecutive maxima (labeled

 

 

  



Scale JPEG Quality
Factor 25% 40% 65% 100%
0.25 93.55 98.39 100.00 100.00
0.50 100.00 100.00 100.00 100.00
0.75 100.00 100.00 100.00 100.00
1.00 100.00 100.00 100.00 100.00

Table 1. Accuracy rate (in %) in the boundary position
according to the scale factor and jpeg quality.

as i and i+1, i = 1, · · · , nl−1) are considered, and bound-
ary points are obtained as (riend + ri+1

ini )/2. The projection
in the right panel of Fig. 3 (b) shows both the edges of
every reconstruction (circles) and the boundaries (crosses)
associated to the image in the left panel of Fig. 3 (b).

5. Results

A set of thirty one 12-leads ECG printouts were used to
evaluate the performance, both with solid and dotted grid
lines. Grid lines are reddish, but the color is not the same
for all printouts because the paper comes from different
manufacturers. Images were taken using the auto mode
with a mid-range smartphone, in indoor scenarios, with
natural lighting and shadows. The phone was manually
held and the paper was placed on a flat surface, providing
images of 4208 × 3120 pixels in jpeg format. Average
spatial resolution was of 1000 dpi. Signal tracings in the
same printout do not overlap in the corresponding ampli-
tude ranges, though they can be quite close. The definition
of the signal tracing is not uniform, sometimes it is well
defined and others it is just slightly perceptible, specially
at high frequency deflections.

Table 1 presents the accuracy rate in the boundary posi-
tion. We consider the boundary position is adequate when
it is between two signal tracings, i.e. without fragment-
ing a signal. The influence of the spatial resolution (dec-
imation of the original image up to one-fourth the origi-
nal one) is evaluated through the scale factor (rows in Ta-
ble 1). JPEG Quality is associated to the compression rate,
with the right-hand column corresponding to the maximum
quality (original image). For the same percentage of ‘jpeg
quatily’, higher compression rates were achieved for im-
ages with dotted grid lines. This affected to the estimation
of the boundary position, since errors occurred just in im-
ages with dotted grid lines, values of ‘jpeg quatily’ lower
than 65% and the lowest spatial resolution (0.25 scale fac-
tor, equivalent to 250 dpi).

6. Conclusions

This work has proposed an automatic procedure to crop
color ECG printout images in individual sub-images con-
taining a unique lead in each sub-image. Unlike previous

digitalization ECG procedures, these color EGC images
were taken by using the camera of a mobile phone. Thirty
one 12-leads ECG images were used in order to evaluate
this procedure. These images were decimated to different
spatial resolutions and compressed by modifying the ‘jpeg
quality’ parameter. Though both parameters were impor-
tant for a successful segmentation, results evidenced that
images with solid grid lines were more robust when these
parameters decreased their values. In fact, errors just oc-
curred for images with dotted grid lines, the lowest spatial
resolution (250 dpi) and values of the ‘jpeg quality’ param-
eter lower than 65%.
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