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Abstract 

Electro-anatomical mapping is a widely used 
technique used by electrophysiologists to understand 
patient’s activation pattern. The system measures 
activation time at different locations but does not provide 
information on underlying electrical pathways or 
triggering points, such as Purkinje-myocardial junctions 
or ectopic foci. We present a method to estimate the 
locations of Purkinje-myocardial junctions from a 
discrete set of endocardial samples. Using less than 1000 
endocardial samples it can recover locations and 
activation times of the most influencing Purkinje 
myocardial junctions from Purkinje trees of up to 500 
junctions. A simulation study revealed that using the 
estimated Purkinje myocardial junctions, mean squared 
errors of local activation times remain low for different 
tree structures.  

1. Introduction

The heart electrical sequence of activation in healthy 
subjects is deterministic and can be monitored by means 
of the ECG. In the ventricles, the activation of the 
myocardial muscle is triggered by Purkinje-myocardial 
junctions (PMJs), which are the terminal sites of the 
specialised cardiac conduction system (CCS) [1]. 
However, the location and density of PMJs is expected to 
vary between subjects, given the stochastic nature of the 
CCS development at distal regions [2]. Several important 
cardiac disorders such as ventricular dyssynchrony or 
ventricular tachycardia (VT) [3], require therapies that 
could interact directly with the CCS, such as cardiac 
resynchronization therapy (CRT) [4], radiofrequency 
ablation or antiarrhythmic drugs [5].   

Developing patient-specific CCS models is key for 
cardiac electrophysiology and electromechanical 
simulation in health and disease [6]. To simulate the 
activation sequence of a patient a model with tailored 
CCS structure and PMJ distribution is required. In 
addition, knowing the location of dense PMJs areas can 
help in the delivery of electrical therapies, e.g. by better 

selecting the location of CRT leads to minimize the time 
to reach the CCS, or by avoiding ablating by RFA regions 
with a high density of PMJs. 

Despite the well-known importance of the CCS [7], 
the challenges associated to obtaining its structure in vivo 
have led modellers to use simplified approaches to 
reproduce its function. Among the most common 
methods to build generic CCS for cardiac modelling there 
are: manual delineation of CCS branches, fractal models, 
segmentation of free-running sections from high-
resolution ex-vivo images, or stochastic rule-based CCS 
models constrained by population ex-vivo animal data 
[8]. Since it is not possible to obtain direct in-vivo 
imaging data from the CCS structure, the only related 
data available are the electrical measurements obtained by 
electro-anatomical mapping systems (EAMs). Recently, 
two different studies have tried to use EAM data to 
generate CCS’s able to better reproduce the patient’s 
sequence of activation compared to a generic CCS [9, 
10]. However, none of them tries to estimate the real 
location of PMJs, but only a compatible activation 
sequence. 

This study presents a method to estimate the location 
and activation time of all relevant endocardial sources of 
electrical activity (PMJs and/or ectopic foci) from a 
discrete set of endocardial samples obtained from an 
EAM. The method is based on knowledge about the way 
that the electrical wavefront propagates on tissue.  To be 
able to validate the method we use a simplified domain 
were the complexity of the CCS, the number of PMJs and 
number of samples can be controlled. Given a minimum 
ratio of EAM samples versus PMJs the system will locate 
trigger points with an error in the order millimetres.  

2. Material and methods

2.1. Estimation method 

We aim to estimate the location, 𝑠𝑠, and activation time 
𝜏𝜏 of a set of PMJs, 𝒫𝒫, from a set of sample points, ℳ, 
which are tuples (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖) ∈ 𝛺𝛺 × ℝ, where 𝛺𝛺 ⊂ ℝ2 
represents space in the endocardial domain, and i=1,…,m 
(see Figure 1). In 𝛺𝛺 the activation time, t, of a point x can 
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be calculated as, 
𝑡𝑡(𝑥𝑥) = min

𝑘𝑘
(𝜏𝜏𝑘𝑘

||𝑥𝑥−𝑠𝑠𝑘𝑘||
𝑣𝑣

), (1) 
where 𝑣𝑣 is the propagation velocity in the myocardium 
and k =1,…,n. The location and number of PMJs, n, in the 
set 𝒫𝒫 is unknown and has to be estimated. 

Figure 1: Color-coded endocardial domain activated by 
two PMJs, depicted as small circles, at t=0 ms. White 
crosses are sample points from the set ℳ, similar to those 
obtained in EAMs. 

The activation generated by each PMJ can be 
considered as a positive half cone with its vertex at (𝑠𝑠, 𝜏𝜏), 
so that all points (𝑥𝑥, 𝑡𝑡) within that cone are activated by 
the same PMJ, meeting the following equation, 

‖𝑥𝑥 − 𝑠𝑠‖ = 𝑣𝑣(𝑡𝑡 − 𝜏𝜏). (2) 

If three different points from ℳ are activated by the 
same PMJ, each of them must meet Equation 2 for the 
same cone vertex.  

To estimate the PMJs locations, we arrange all points 
in ℳ in groups of three points. First, we perform a 
Delaunay triangulation assuming that points close in 
space might have a higher probability of being activated 
by the same PMJ. As a second step we solve the system 
of non-linear equations defined for the three points of 
each triangle using Equation 2. Since each PMJ 
propagation defines a half cone, it must also meet that  
𝑡𝑡𝑖𝑖 > 𝜏𝜏 for i=1,..,3. In addition, it is required that the 
estimated PMJ is compatible with the backward Eikonal 
problem associated to the triangle where the estimated 
PMJ is located in. 

2.2. Simulation study 

To test the methodology, we developed a simulation 
study based on synthetic Purkinje trees with different 
branch and PMJ densities. All the Purkinje trees lie on a 
2D sheet of tissue of 7x12cm that represents the 
endocardium. To build the Purkinje tree structure we use 
an algorithm that creates branches recursively up to a user 
defined level depth. As depicted in Figure 2, at each level 

branches grow from terminal points and are perpendicular 
to previous level branches. Terminal nodes at the deepest 
level of recursion are considered the PMJs. Branch 
lengths are generated following a normal distribution with 
parameters obtained from [8].  

Figure 2: Three different configurations of the CCS with 
increasing density of PMJs (red spheres). Configurations 
used can have one primary branch (A) and (C), or three 
primary branches (B). 

In this study we used three different levels of branch 
recursion, 2, 4 and 6.   

For each scenario we generated 10 different sets of 
random sample points ℳ on the 2D tissue sheet. The size 
of the sets varied from 100 to 1000 points in steps of 100, 
and were used to estimate PMJ locations and activation 
times. The size of the set ℳ is in the order of magnitude 
of a routinely EAM acquired in the clinic. The activation 
time at sample points was determined using a forward 
simulation and can be calculated by Equation 1. Figure 3 
shows an example of a Purkinje configuration, where red 
spheres represent the PMJs, and crosses the sample 
points. 

We defined the parameters for six different Purkinje 
tree configurations, and produced 10 instances for each of 
them. Following, we estimate the PMJ locations using an 
increasing number of sample points. Finally, from the 
estimated PMJs, we propagate the electrical wavefront to 
the tissue and calculate the mean square error of the local 
activation times. 

3. Results

The results of the PMJ estimation are graphically 
represented in Figure 3. It corresponds to a simulation 
with 3 main branches, and a recursion depth of 2, which 
produced 34 PMJs. In that simulation, 4 PMJs were not 

 

 

  



detected, 30 were properly estimated, and 1 was 
incorrectly estimated (red arrow). The regions encircling 
sample points indicate that all samples within are pointing 
to a single PMJ candidate. In some special configurations 
where there are many sample points, the algorithm can 
resolve a plausible alternative location for a PMJ given 
the input data, which does not correspond to the real one. 
For that reason, we perform additional checks to the 
solver solution, to report also the PMJs correctly 
estimated.    

Figure 3: Configuration with three main branches and 34 
PMJs (black circles), together with a random set of 
sample points (crosses). Blue dots mark the location of 
automatically properly estimated PMJs. Red dots within 
PMJs correspond to undetected PMJs. Red arrow points 
to an incorrectly estimated PMJ. 

Figure 4 shows results for two representative Purkinje 
tree configurations. Each plot shows the mean number of 
PMJs for the scenario (10 repetitions per scenario), the 
number of effective PMJs (which can be truly estimated 
from the samples), the total number of PMJs estimated by 
the algorithm and finally, the number of PMJs correctly 
estimated.   

In scenarios with 15-45 PMJs (0.28-0.83 PMJs/cm2) and a 
reasonable level of clustering, the algorithm obtains 
nearly all PMJs (see Figure 4a) when it has enough 
sample points, that is more than 700. However, when the 
density of PMJs increases to around 100-200, the problem 
becomes more complex, since these points tend to be 
clustered. If we take into account only the effective PMJs, 
that is those that activate some tissue (detectable), then 
the number of PMJs decrease to around 80-90. From 
those, the algorithm is able to detect 50-60 PMJs when 
1000 sample points are used (see Figure 4b).  

Despite the limitations in the detection algorithm, 
when the estimated PMJs are used to activate the tissue, 
the LAT errors obtained are small as shown in Figure 5. 
Having 300 sample points or more the MSE calculated on 

the LATs is low in most of the scenarios. The densest 
cases with around 500 PMJs requires at least 600 sample 
points to ensure that LATs produced by the estimated 
PMJs are close to real ones.  

Figure 4: Detected PMJs for two configurations with 
three primary main branches and an increasing number of 
sample points; (a) using a recursion depth of 2 (average 
35.4 PMJs), and (b) a recursion depth of 4 (average 132.2 
PMJs). REAL are the real PMJs in the tree, ESTIMATED 
are those detected by the solver, DETECTABLE are 
those activating a minimum amount of tissue that can be 
detected from the sample points and ESTIMATED OK, 
which are those correctly estimated after applying all the 
check.  

4. Discussion and conclusions

We have presented a method to estimate the location 
and activation time of PMJs from a set of random sample 
points, to emulate the data acquired in a clinical electro-
anatomical map.  

 

 

  



Figure 5: Mean squared LAT error (in ms) obtained for 
different scenarios (10 repetitions), where the estimated 
PMJs are used to activate the tissue. PB stands for the 
number of primary branches, as depicted in Figure 2, and 
D for recursion branch depth.  

We show that given an appropriate ratio between the 
number of PMJs and endocardial samples acquired, the 
system can locate the effective PMJs and determine their 
activation time, provided that they are not arranged in 
small clusters. In order to detect all PMJs, we will need to 
sample, at least, with a density three times higher than the 
highest density of PMJs. When clustered PMJs appear, 
they are virtually impossible to be detected with the 
current setup. The signal emitted by inner PMJs is 
quickly masked by the PMJs in the cluster border and 
therefore their effect on tissue is very limited or even non-
effective at all. PMJ located in cluster borders are 
properly detected, while the inner PMJs are in general 
missed by the algorithm. This fact is very clear when 
analyzing the MSE of the LATs in the sample points. 
From these results, we conclude that our algorithm is 
capable of finding most of the effective nodes of the 
cardiac conduction system. 

The method presents some limitations that have to be 
addressed. Of particular relevance is that it neglects the 
existence of any electrical barrier in the endocardial tissue 
which can be produced by ischemia or a lesion generated 
during a RFA procedure. The current study has been 
carried out considering that endocardium is isotropy or 
presents a fix anisotropy, which does not change 
throughout the domain. 
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