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Abstract

Doppler ultrasound M-mode images are routinely used
in clinical echocardiography, and they have been proposed
for non-invasive estimation of the intracardiac pressure
gradients in the heart, a process that has been shown to
be sensitive to spline interpolation. In this work, we scru-
tinized the effect of interpolation with a new approach us-
ing support vector machines (SVM) for estimation using
autocorrelation Mercer kernels in ultrasound images. The
SVM algorithm was modified to provide the estimation of
a whole image in terms of a reduced set of pixels used as
training data set. The autocorrelation of the color Doppler
M-mode (CDMM) image was estimated with conventional
cross-correlation by considering the complete image, and
it was used as the Mercer kernel required by SVM. Sev-
eral subsampling strategies were scrutinized, namely, a
heuristic approach, a criterion based on the edges, and
a criterion based on the amplitudes. In order to evaluate
the proposed methods, we analyzed a previously proposed
Doppler image synthetic model, as well as case study with
a real image. Results in terms of mean absolute error
showed that the minimum error is obtained when informa-
tion from the edges is considered, yielding 7.37 for single
width radial basis function, 2.80 for double with radial ba-
sis function, and 0.80 for autocorrelation kernel. The au-
tocorrelation kernel provides with an accurate estimation
of the spatiotemporal distribution of flow velocity within
the heart using CDMM images. This methodology can be
further exploited for enhancing the sensitivity of the pres-
sure gradients estimation to polynomial interpolation and
then for improving noninvasive cardiovascular diagnosis.

1. Introduction

Doppler echocardiography can be considered one of the
most useful noninvasive technique to measure blood flow

within the heart [1]. Broadly speaking, frequency shift oc-
curs when the ultrasound waves interact with objects in
motion, such as red blood cells within blood. This de-
tectable frequency shift is also dependent upon angle of
incidence of the ultrasound beams with the blood flow, and
it can be used to determine the velocity of the blood flow.
Not only the blood velocity, but also intracardiac pressure
differences can be obtained noninvasively by using ultra-
sound images under certain conditions. Historically, M-
mode (motion mode) echocardiography, which provides a
one-dimensional (depth only) view of the heart, was the
first effective modality for the ultrasonic evaluation of the
heart. Although newer and more advanced modes of ul-
trasounds in echocardiography have been developed, and
M-mode is a fundamental part of the routine echocardio-
graphic exam and provides an important supplement to the
newer echocardiographic modalities.

Previously, the non-invasive estimation of intracardiac
pressure gradients has been proposed to be possible from
post-processing of Color Doppler M-mode (CDMM) [2].
Whereas this technique has given access to a number of
cardiac indices, still its use is mostly based on spline in-
terpolation, which can have a marked smoothing effect on
the image preprocessing. In order to estimate the blood
velocity from the CDMM images with improved interpo-
lation capabilities, we propose to use a Support Vector Ma-
chine (SVM) algorithm with a kernel able to get a better
adaptation to this type of images, such as the kernel based
on the image autocorrelation function, following the ideas
in [3] for interpolating one-dimensional signals. In [4], an
SVM algorithm was also used to address this same prob-
lem, which was based on a diverse-width Gaussian Mercer
kernel, which still can not completely follow the smooth-
ness that characterizes these types of images, as shown in
the experiments section.

This paper is organized as follows. Section 2 summa-
rizes the main concepts related to the SVM algorithm with
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autocorrelation kernel, the generated synthetic image and
the considered sample selection criteria. Section 3 shows
the obtained results when the SVM with autocorrelation
kernel is used on synthetic and real CDMM images, and
by considering different criteria for sample selection. Con-
clusions are finally stated in Section 4.

2. Methods

SVM with Autocorrelation Kernel. The SVM model
for CDMM images estimation [4] uses the following
nonlinear regression model. Let vb(s, t) and {Vi,j =
v(iδs, jδt), i = 1, · · · , Ns, j = 1, · · · , Nt} denote the
velocity field and the acquired image (Ns × Nt matrix),
respectively. Also, let [i, j] denote the image coordinates
of pixel Vi,j , and let I denote the set of coordinates for all
the image pixels. Then, by using some adequate criterion,
I can be split into subsets, Itrain and Itest, to be used for
training and testing the model, and hence we have

Vi,j =< w,φ([i, j]) > +b+ ei,j (1)

with [i, j] ∈ Itrain, where ei,j is the model approxima-
tion error for the pixel; φ([i, j]) is a nonlinear application
of coordinate vector [i, j] to a high-dimensional (say P -
dimensional) feature space F; and b is a bias term. A linear
regression for the pixel value is given by the dot product of
nonlinearly transformed pixel coordinates andw ∈ F.

Given this image model, we use the ε-Huber cost pro-
posed in [5], which is a robust cost function that can adapt
itself to different kinds of noise. By following the con-
ventional SVM methodology, the previous loss function is
regularized with the squared norm of model coefficients
and primal problem consists of minimizing
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with respect to wp, {ξ(?)i,j } (notation for both {ξi,j} and
{ξ?i,j}) and to b, and constrained to

Vi,j− < w, φ([i, j]) > −b ≤ ε+ ξi,j (3)
−Vi,j+ < w, φ([i, j]) > +b ≤ ε+ ξ?i,j (4)

and to ξi,j , ξ?i,j ≥ 0, for [i, j] ∈ Itrain. In this last equa-

tions, {ξ(?)i,j } are slack variables or losses, and they han-
dle the residuals according to the robust cost function; and
Itrain1 , Itrain2 are the subsets of pixels for which losses are
in the quadratic or in the linear cost zone, respectively.

In brief, by including constraints (3), (4) into (2), the
primal-dual functional (or Lagrange functional) is ob-
tained. By making zero the gradient of the Lagrangian

with respect to the primal variables [5], and by using the
Karush-Khun-Tucker conditions, several manipulations
can be done. The correlation matrix of input space pixel
pairs can be identified, and denoted as R([i, j], [k, l]) ≡<
φ([i, j]),φ([k, l]) >.

After solving the dual problem in matrix form [5], the
velocity for a pixel at [k, l] is given by

V̂k,l =
∑

[i,j]∈Itrain

βi,j < φ([i, j]),φ([k, l]) > +b (5)

with βi,j = αi,j − α?i,j , which is a weighted function of
the nonlinearly observed times in the feature space. Note
that only a reduced subset of the Lagrange multipliers is
nonzero, which are called the support vectors, and that the
CDMM image estimation is built only with them.

It is known that the calculation of a dot product in F can
be done with a Mercer kernel. Among the most common
Mercer kernels, we find the linear and the Gaussian ones.
In [4], the double-width Gaussian kernel was proposed,
given by KD([i, j], [k, l]) = exp

(
|i−k|2
−2σ2

s

)
exp

(
|j−l|2
−2σ2

t

)
,

in order to deal with the different scales of the two differ-
ent dimensions in M-mode, namely, space and time.

Given the smoothness involved in CDMM images, we
propose to use a kernel able to adapt to these images, such
as the following autocorrelation kernel (adapted from [3]),

K([i, j], [k, l]) = ρv(k − i, l − j) (6)

with

ρv(m,n) =
∑

[i,j]∈Itrain

V [i, j] · V [i+m, j + n] (7)

and where m and n must be small enough to represent an
autocorrelation function with resolution to work with.

The CDMM image model can finally be expressed as

V̂k,l =
∑

[i,j]∈Itrain

βi,jK([i, j], [k, l]) + b (8)

Cross-validation techniques can be used in order to adjust
the free parameters of the SVM cost function (ε, δ, C).

Synthetic Image Model. A simple model of diastolic
transmitral flow in M-mode color-Doppler was previously
created by addition of 3 bivariate Gaussian components,
following the methodology in [4], and given by

vb(s, t) =
3∑
i=1

ai exp

{
− 1

2
[si, ti]Σ

−1
i [si, ti]

T

}
(9)

where [si, ti] denotes a bidimensional row vector, Σi is the
covariance matrix of each component. As shown in Fig.
1, two components account for early LV filling (E-wave,
i = 1, 2), and a lower amplitude component emulates late
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Figure 1. Synthetic (up) and real (down) CDMM image.

filling (A-wave, i = 3). Time 0 was defined at the QRS
onset

Sample Selection Criteria. The training and test sets,
used by the SVM machine to rebuild the total CDMM im-
ages, have been scrutinized according to different criteria
of sample selection, as described next:
1. Random: The training and test samples are selected
from the image randomly.
2. Edge Based: By using a 2-D edge filter (Sobel filter
[6]), only some of those samples from image regions with
sharp amplitude changes are considered to build the ma-
chine. A threshold can be considered to obtain a training
set with a large enough number of samples. Finally, the
training and test sets are generated.
3. Amplitude Based: The image pixels are ranked in order
of its amplitude from greatest to least. Then, by using a
Gaussian function, larger weights are given to those sam-
ples (pixels) with larger amplitudes. Finally, the training
and test sets are generated.

3. Experiments and Results

In this section, results with the Doppler image synthetic
model and with a real image are presented. For the syn-
thetic image, different approaches to SVM algorithm with

Table 1. Synthetic image. MAE in CDMMI approxima-
tion considering different kernels.

# tr. pixels RBF D-RBF Corr
250 7.93 1.52 1.23

1000 7.01 0.75 0.72

Table 2. Synthetic image. MAE in CDMMI approxima-
tion considering different sample selection criteria.

# tr. pixels Random Edges Amplitude
100 1.86 1.87 4.15
250 1.23 1.13 3.09
500 0.95 0.90 1.95

1000 0.82 0.74 1.76

three different kernels were used for denoising. For both
images, the training subset (random image subsampling)
were selected following different sample selection crite-
ria and considering different number of training samples.
Mean absolute error (MAE) of CDMM image approxima-
tions was calculated in the test pixels.

3.1. Results on Synthetic Data

Kernel Evaluation. For a fair comparison, a SVM al-
gorithm was used with RBF, D-RBF and autocorrelation
kernels, considering the same number of training samples
(250 and 1000) and a random sample selection criteria. Re-
sults in terms of MAE (see Table 1) show that better ap-
proximations are obtained when an autocorrelation kernel
is used and when the number of training sample increases.

Sample Selection Criteria Evaluation. From Table 1,
we concluded that using an autocorrelation kernel provides
better CDMM image approximation. Then, we evaluated
the impact of using different sample selection criteria and
different number of pixels in the training subset. Results
in terms of MAE are shown in Table 2. For all criteria,
lower MAE values were obtained as the number of train-
ing samples was higher. Regarding the selection criteria,
the approach based on edges provides the best CDMM im-
age approximation independently of the number of sam-
ples considered.

3.2. Results in a Real Image

A CDMM image from a healthy volunteer is also ana-
lyzed in this work. The 126 x 171 image was subsampled
by 2. Table 3 presents the MAE obtained when consider-
ing different sample selection criteria and different num-
ber of pixels with the autocorrelation kernel, noting that
we increased here the number of training points. We can
obtain similar conclusions as with the synthetic image. As
expected, the higher the number of training samples, the

 

 

  



Table 3. Real image. MAE in CDMMI approximation
considering different sample selection criteria.

# tr. pixels Random Edges Amplitude
100 4.28 4.22 16.29

1000 2.25 2.53 6.81
2000 2.22 2.19 5.85
3000 2.02 2.00 4.94

better approximations. Figure 2 shows the spatial distri-
bution of the CDMMI residuals when using 3000 training
points and edges vs. amplitudes sample selection criteria.

4. Conclusions

Different approaches for CDMM image denoising have
been proposed and scrutinized. The methods used in this
work are based on non-linear SVM with single and dou-
ble width radial basis functions, and autocorrelation ker-
nel, considering different selection criteria and different
number of samples. Comparisons among them show that
the performance of SVM using an autocorrelation kernel
with a selection criteria based on amplitudes provides with
the best results. Moreover, we can conclude that the higher
the number of training samples, the better the SVM perfor-
mance, though a limited set yields a good enough quality.
Oncoming work is devoted to extend this work to intra-
cardiac pressure gradients which are usually estimated by
post-processing of flow CDMM images.
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