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Abstract

Increased understanding about the mechanisms of coro-
nary thrombosis in humans has been limited by the lack
of imaging modalities with resolution sufficient to char-
acterize fibrous cap tissue and determine its thickness in
vivo. Intravascular optical coherence tomography (IOCT)
provides images with micrometer axial (10-15µm) and lat-
eral resolution (40µm), enabling detailed visualization of
micro-structural changes of the arterial wall. This arti-
cle describes a fully automated method for identification
and quantification of fibrous tissue in IOCT human coro-
nary images based on spatial-frequency analysis by means
Short-Time Fourier transform. Forty IOCT frames from
nine IOCT in-vivo datasets were annotated by an expert
and used to evaluate the proposed fibrous tissue charac-
terization method.

1. Introduction

The most frequent cause of coronary occlusion is rup-
ture of thin-cap fibroateroma (TCFA) plaques [1]. Plaque
rupture with subsequent thrombosis is the most frequent
cause of acute coronary syndrome. Usually these lesions
are characterized by a large necrotic core with a fibrous cap
of thickness less than 65µm, and a plaque rupture occurs
when the cap thickness is 23± 19µm [2].

Kume et al. [3] demonstrated that recent technological
advances in intravascular imaging technology such as op-
tical coherence tomography (IOCT) provides an accurate
representation of the thickness of the fibrous cap and an
useful tool to assess the vulnerability in lipid-rich plaques.
Frameworks have been developed using IOCT as a modal-
ity that aim to quantify the thickness of the fibrous cap
using (i) the attenuation coefficient based on image in-
tensity [4] and; (ii) a semi-automatic method to quantify
TCFA by dynamic programming [5].

Usually fibrous tissue has a texture in IOCT images that
is more homogeneous and with higher backscattering than
all other areas in the image. However, changes may occur

in brightness according to the position of the catheter at the
time of slice acquisition. Methods based only on texture
analysis [6] and intensity of the pixels may be adversely
affected by changes in light intensity caused by the catheter
movement. Thus, frequency domain-based methods can be
an alternative to overcome this image intensity problems.

If the spectrum is calculated for an image that contains
several different types of tissue, it is possible to find the
spectral component with the highest amplitude without lo-
calization of the frequency in the spatial domain. A so-
lution to identify more than one tissue is to calculate the
spectrum for each window of the image where the accu-
racy of this spectrum is directly proportional to the size of
this window.

There are several methods of frequency analysis relative
to a consecutive unit of measurement (eg. time, distance)
amongst them, we can highlight: Short-time Fourier trans-
form (STFT), Wigner-Ville distribution (WVD) and Choi-
Williams distribution (CWD) [7]. But the objective is the
same: analyze spectrum for each time or distance inter-
val. Thus, we have developed a fibrous tissue identifica-
tion method based on space-frequency methods that is less
sensible to changes in lighting than methods restricted to
space analysis. We can calculate the spectrum of a given
tissue and analyze which frequencies are significant.

In this paper we propose STFT-based method to iden-
tify fibrous tissue in IOCT images, an optimization method
to select the best features and a validation of the results
comparing with manual segmentations, achiving 80% and
98.6% of sensitivity and specificity, respectively.

2. Materials and Methods

Given an IOCT frame, the proposed method to identify
and measure the thickness of the fibrous tissue consists of
the following 5 steps: (i) identification of the lumen bor-
der; (ii) calculation of the spectrum for each different depth
by means of STFT; (iii) spectral analysis; (iv) fibrous tissue
identification; (v) fibrous tissue thickness quantification.
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2.1. Image data

Images were acquired using a Fourier-Domain OCT
(FD-OCT) system (C7-XR - OCT Intravascular Imaging
System, St. Jude Medical, St. Paul, Minnesota) at the
Heart Institute, University of Sao Paulo Medical School
(INCOR-HC FMUSP), Brazil. The study protocol was ap-
proved by the institutional review board (CAPPesq) under
register no. 0243/08. The system was equipped with a
Dragonfly catheter with a diameter of 0.90 mm, a Guide
Wire (GW) with a maximum outer diameter of 0.3556 mm
(ImagewireTM, LightLab Imaging), and working length
of 135 cm. Pullback speed was 20 mm/sec over a dis-
tance of 54.0 mm, totalizing 271 frames. The 2D input
images to the proposed method were in DICOM format
with dimensions 1024 × 1024 pixels and spatial resolution
of 10 × 10 µm in Cartesian coordinates. In total, 40 2D
images from 9 patients were used, 6 IOCT frames for the
training phase and 34 for testing.

2.2. Lumen border detection

The input images were transformed to polar coordinates,
and the lumen detected by the method described in [8],
based on a bilateral filter and morphological operations.
The lumen border indicates where the vessel wall starts,
limiting the input signal. Each A-line in the polar image
is an intensity profile where each points is related to a dif-
ferent depth, as shown in Figure 1, and is used as an input
signal for the next stage of the processing.

early vascular wall

A-line

Figure 1. The Cartesian image is transformed to a polar
coordinates and each A-line (column) provides an inten-
sity profile. The lumen border detection defines where the
vessel wall starts.

2.3. Short-time Fourier transform

This method consists of multiplying a signal by a win-
dow function hwith a given length δ to produce a modified
signal, as shown in Equation 1, and perform the Fourier
transform in this signal.

s′(δ) = s(δ)h(δ − d) (1)

The STFT is calculated for each A-line (input signal) in
the polar image, where each points is related to a different

depth d, and it is represented by Equation 2, resulting in a
three-dimensional information: depth, frequency and mag-
nitude. The Hanning function was used as window func-
tion h. Figure 2 shows the input signal s(d) multiplied by
the window function h(δ − d) followed by calculation of
the FFT in different depths d. The result is a frequency
spectrum for each d, as illustrated in Figure 3 a).

STFT (ω, d) =

∫
s(δ)h(δ − d)e−jωδdδ (2)

where ω is the angular frequency.
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Figure 2. STFT scheme adapted from Quian et al. . The
intensity value in an IOCT A-line scan is presented as the
function s(d), which is windowed by the function h(d).

2.4. Spectral analysis

Information was extracted from each spectrum calcu-
lated along the A-line, such as:
• Maxmag (maximum magnitude ):

Maxmag(d,Ω) = max{M(d,Ω)}

• Meanmag (mean magnitude):

Meanmag(d,Ω) = M(d,Ω)

• Fmax (frequency of the maximum magnitude):

{Fmax|M(d, Fmax) = max{M(d,Ω)}}

• Fmean (mean frequency):

Fmean(d,Ω) =

n∑
i=1

ωi ∗ P (d, ωi)

• Fmagmean (mean of frequency multiplied by magnitude ):

Fmagmean(d,Ω) = Ω ∗M(d,Ω)

• STDF (standard deviation of frequency):

STDF (d,Ω) =
n∑

i=1

(ωi − Fmean)2 ∗ P (d, ωi)

 

 

  



• E (energy density spectrum):

E(d,Ω) =
n∑

i=1

P (d, ωi)

where ω is the angular frequency, Ω = {ω1, .., ωn},
and M(d,Ω) = |STFT (∆d,Ω)| and P (d,Ω) =
|STFT (∆d,Ω)|2 are the magnitude and the power in the
depth d and for frequencies Ω, respectively.

These measures are calculated based on a depth interval
∆d = [d − δ, .., d + δ] as shown in Figure 3 b) where the
region bounded by a rectangle has the values considered
to the computing for each d. The window lengths, δ, were
tested with the following values: 16, 32 and 64 pixels, with
δ = 64 pixels providing the optimal result.

a)

b)

Figure 3. Depth-frequency plot: a) 3D surface plot show-
ing variation of magnitude of the STFT with changing
depth and frequency; b) a 2D plot, showing the same pro-
file as in a), with a hashed rectangle is indicating the neigh-
borhood for spectral metrics related to the depth d.

2.5. Fibrous tissue identification

The identification of fibrous tissue is made by com-
bining the metrics described above. The best parameters
were chosen by the optimization method Forward Regres-
sion Orthogonalization Least Squares (FROLS) [9], which
found a set of best features and its weights for a linear com-
bination. If the value of linear combination for each pixel
is≥ 0.5, considering the range [0, 1], the pixel is labeled as
fiber. This optimization method used 6 frames labeled by
a specialist for the training phase. The best measures de-
termined by FROLS were: the maximum magnitude, the
mean of frequency multiply by magnitude and energy den-
sity spectrum.

Figure 4. IOCT frame in polar coordinates showing auto-
mated identification of fibrous tissue (yellow) and distance
between inner and outer contour (white).

2.6. Thickness quantification

In the IOCT images, the fibrous tissue thickness is de-
fined as the distance from the internal border of the signal-
rich layer, nearest the lumen, to the internal border of the
signal-poor middle layer or to the internal border of the
signal-poor region in the case of lipid pools or calcium
plaques. The distance is computed from the polar image
in increments of 1 degree. Figure 4 shows the distance in
white color.

2.7. Validation

The evaluation of the fibrous tissue segmentation
method was based on manual segmentation by an expert.
A set of seven metrics was used to measure the accuracy
of the proposed automated method for fibrous tissue iden-
tification. These metrics are: Mean absolute difference
of area (MADA), Hausdorff distance (H), RMS Symmet-
ric surface distance (RMSSSD), Specificity(SPE), Sensi-
tivity (S), Accuracy (ACC), Dice metric (DM). More de-
tails about the metrics are presented in [8].

3. Results

Tests were carried out on a total of 34 images with
atherosclerotic plaque obtained during 7 acquisitions. The
fibrous area was obtained without any user interaction. The
mean difference between the automated and the manual
fiber tissue area was found to be 1.1mm2. Considering
the overlap of both results, the automated method achieved
80.0% and 98.6% for sensitivity and specificity, respec-
tively. Table 1 shows all evaluation metrics of the proposed
automated method. Figure 3 shows the results of auto-
mated fibrous tissue identification compared with manual
segmentation.

4. Discussion and Conclusion

A limitation of the frequency analysis in this study
comes from choosing a small window to optimize spatial
resolution and select pixels within a single region, which

 

 

  



Table 1. Evaluation of automated fibrous tissue identifica-
tion for 34 frames.

RMSSSD DICE MADA S SPE ACC H
(mm) (%) (mm2) (%) (%) (%) (mm)
0.13 76.3 1.1 79.9 98.6 97.4 0.40

Figure 5. IOCT images segmented by the proposed
method. The fiber tissue areas are identified using the auto-
mated method (yellow) and the manual segmentation (ma-
genta).

limits the number of frequency bins for the Fourier trans-
form.

Ughi et al. [6] developed an automated tissue charac-
terization based on texture analysis, attenuation coefficient
and pixel classification using Random Forest, reaching an
accuracy of 89.5% for fibrous tissue, which is lower than
our method (97.4%). Athanasiou et al. [10] developed an
automated method based on segmentation and classifica-
tion using K-means and achieved 87% and 0.09mm2 for
sensitivity and MADA respectively, whereas we obtained
80% and 1.1mm2 for these measures. Despite not having a
better result comparing with [10], we believe these results
can be improved with the incorporation of the attenuation
coefficients into the methodology proposed in [11].

Acknowledgements

The authors thank Sao Paulo Research Foundation
(FAPESP) for their financial support (grant #2013/09922-8)
and NAP eScience-USP for use of their equipment.

References

[1] Mukherjee D, Bates E, Roffi M, Moliterno D. Cardiovascu-
lar Catheterization and Intervention: A Textbook of Coro-

nary, Peripheral, and Structural Heart Disease. 2010.
[2] Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of

the vulnerable plaque. Journal of the American College of
Cardiology 2006;47(8 Suppl):C13–8. ISSN 1558-3597.

[3] Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N,
Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K.
Measurement of the thickness of the fibrous cap by optical
coherence tomography. American Heart Journal October
2006;152(4):755.e1–4. ISSN 1097-6744.

[4] van Soest G, Goderie T, Regar E, Koljenović S, van Leen-
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