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Abstract

Here, fuzzy logic models are used to describe the rela-

tion between systolic blood pressure (SBP) and tachogram

(RR) values as a function of the SBP level. These meth-

ods are now evaluated under parasympathetic autonomic

blockade, i.e. a condition which tends to difficult the

modelling task once the RR variability is dramatically de-

creased whereas no SBP changes are observed.

As expected, fuzzy logic models obtained under vagal

blockade have lower modelling error than those obtained

in baseline. The pairwise differences between errors in

both conditions are positively correlated with differences

in SBP LF power and in RR HF power, markers of sympa-

thetic and vagal activity respectively. The methyl-atropine

surfaces are flatter than those in baseline, in agreement

with the decrease in frequency domain BRS estimates from

baseline to drug condition. Finally, fuzzy models obtained

under vagal blockade were found to be statistically signif-

icant, which strengths the potential of the fuzzy logic ap-

proach to model SBP and RR also during vagal blockade.

1. Introduction

The joint analysis of systolic blood pressure (SBP) and

RR variability allows the estimation of the arterial-cardiac

baroreflex sensitivity (BRS) and other important biomark-

ers [1]. Namely, low BRS estimates have been associ-

ated with increased cardiovascular disease-related mortal-

ity [2]. Traditional BRS estimation is performed in a drug

induced setting, which allows to stimulate a large and clear

SBP change in order to force a pronounced RR response

(i.e., a clear baroreflex activation). Through the consecu-

tive administration of a vasoconstrictor and a vasodilator,

it is possible to explore the baroreflex function over a wide

SBP range, usually assuming a sigmoidal shaped SBP–RR

relationship. In this setting, the BRS is usually estimated

as the slope of a tangent line to the sigmoidal curve in

a given SBP value. Spontaneous methods, on the other

hand, allow BRS assessment near the operating point of

the subject, i.e. the SBP and RR values oscillating around

the region of the sigmoidal curve representing its baseline.

Mimicking drug induced methods, time domain methods

for spontaneous BRS estimation assume a linear SBP and

RR relation in specific time intervals [3].

All above-mentioned methods provide one slope esti-

mate establishing the SBP and RR proportionality, regard-

less of the SBP value. We recently explored the use of

fuzzy logic models to describe the relation between SBP

and RR values [4]. This approach does not assume a shape

for SBP and RR relation and opens the possibility to model

a non linear SBP and RR relation, which ultimately will

make possible to obtain a BRS index as a function of the

SBP value. We also demonstrated that fuzzy logic models

are statistically significant in lying and standing conditions

[4], where lying to standing slightly decreases RR mean

and variability, and lowers BRS estimate [3].

The aim is to quantify the ability of fuzzy logic ap-

proach to properly model SBP and RR relation under drug-

induced vagal blockade (by i.v. methyl-atropine adminis-

tration - MeA). This experiment dramatically reduces RR

mean and variability without relevant SBP changes [5],

which difficults the modelling task by the large reduction

in the output variability with respect to the input of the

system. The resulting vagal blockade changes were com-

pared to baseline and associated with recognized markers

of parasympathetic and sympathetic activity (respectively,

RR power in HF band and SBP power in LF band) [5, 6].

Finally, the statistical significance of the models was

evaluated with surrogate data i.e. an ensemble of random

time series that mimic properties of the original data and

is consistent with the null hypothesis of no SBP and RR

relation. With this approach, we seek to identify statisti-

cally significant differences between performances in real

and random data and, thus, to demonstrate that fuzzy logic

models explain a significant amount of data variance.
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2. Experimental protocol and data

Beat-to-beat intrafemoral SBP (mmHg) and RR (sec)

time series were obtained from 7 conscious freely mov-

ing rats. Parasympathetic blockade was achieved by an in-

travenous administration of peripheral muscarinic methyl-

atropine, MeA (0.5 mg/kg), with full effect around 20 min-

utes after administration (e.g. [7]). Data collection ini-

tiated at least 30 minutes before drug administration. The

recording continued 20 minutes after administration (in the

process of vagal blockade) and 30 minutes after complete

vagal blockade. For each subject, intervals of sufficient du-

ration (512 points) were chosen before (baseline) and after

drug blockade (MeA), thus avoiding the transient drug ef-

fect and erratic fluctuations in the series. Figure 1 presents

the intervals chosen for one experimental subject, repre-

sentative of baseline and MeA conditions. As expected,

MeA introduced tachycardia (i.e., decreased the mean RR

value) and diminished RR variability without relevant SBP

changes (both in mean and in variability) [5].
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Figure 1. SBP and RR time series for one subject, in base-

line (a) and after MeA i.v. infusion (b). Time series have

512 beats length and are resampled at 4 Hz.

For each subject and condition, 100 random replicas of

the original RR series were generated while maintaining

the original SBP series. The random RR replicas were

generated by resampling without replacement the original

data, thus preserving the mean and the variability of the

original RR time series. This procedure is equivalent to

scramble the original RR values to produce a surrogate se-

ries with a random order. As a consequence, the tempo-

ral structure and the non stationary behavior of the original

RR series is not present in the RR surrogates. The shuffling

in the RR series additionally destroys the relation between

SBP and RR amplitudes. For illustration purposes, Fig. 2

shows one surrogate realization of the data represented in

Fig. 1 for the MeA condition.
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Figure 2. Example of a surrogate RR time series for MeA

condition, obtained by resampling the data in Fig. 1(b).

3. Methods

3.1. Fuzzy Logic model estimation

The methods have been fully described in our previous

work [4].The fuzzy logic system was defined as a Sugeno

model, which considers the system output as a function

z = f(x), i.e. RR=f (SBP). Given the input x, a typical

rule i = 1, 2, ..., N with output zi is defined as

If x ∈ Fi(x), then zi = aix+ ci, (1)

where Fi(xj) are fuzzy sets and ai and ci are constants [8].

Each rule output zi is then weighted by its firing strength

wi = Γ
Fi(x)

, where ΓFi
is a Gaussian membership func-

tion defined by its center µi and standard deviation σi. The

final output of the system ẑ is the weighted average of all

zi, given by

ẑ =

∑

N

i=1
wizi

∑

N

i=1
wi

. (2)

The number of rules N and the parameters ai, ci, µi

and σi for each rule i = 1, 2, ..., N were optimized by

ANFIS [9]. The initial µi and σi values were obtained

using subtractive clustering. The first center (µi) is identi-

fied as the point with maximum likelihood, i.e., the median

of x. The next center is estimated as the previous, disre-

garding the data already assigned to the existing clusters.

The procedure stops when all data falls within a cluster.

This method, iteractively, divides the antecedent domain

into clusters, estimating their centers, based on a prede-

fined radius (cluster influence within the data space). Fi-

nally, the membership functions appear as the projection

of these clusters on the x axis.

 

 

  



3.2. Fuzzy Logic model performance

The performace of a fuzzy model was evaluated from

δ =
1

m

m
∑

i=1

|z(i)− ẑ(i)|

|z(i)|
∗ 100 , (3)

where ẑ(i) is the estimate of z(i), i represents the temporal

order of the values and m represents the recording length.

In this notation, ẑ is the RR estimate of a given SBP value.

The lower the δ the higher the model performance.

3.3. Markers of (para)sympathetic activity

Parasympathetic blockade was quantified from fre-

quency domain analysis of SBP and RR variability, under

baseline and MeA condition [5, 6]. In particular, literature

results suggest that the RR power in high frequency band

(HF) may be a marker of parasympathetic tone, whereas

the blood pressure power in low frequency band (LF) may

be a good marker of sympathetic activity (e.g. [6] and ref-

erences therein included). Moreover, frequency domain

BRS (ms/mmHg) was estimated from the average gain of

the SBP and RR transfer function. SBP and RR powers

and also BRS gains were evaluated in LF (0.07-0.3 Hz),

MF (0.3-0.6 Hz) and HF (0.62.0 Hz) bands [10], from

Blackman-Tukey (cross-)spectrum estimates [11].

4. Results

Results comparing baseline and MeA conditions are

presented in Table 1. As expected, MeA reduced RR mean,

RR variability and RR power in HF band, without signif-

icant SBP changes. However, RR power in LF band was

also markedly decreased after methyl-atropine, which con-

firms that RR power in LF band is also associated with

Table 1. RR (msec) and SBP (mmHg) parameters (mean

± standard error), before and after vagal blockade.

Parameter Baseline MeA

RR mean 177.5±11.1 138.5±1.4

RR variability 30.4±10.2 2.9±0.7

RR power LF 27.7±9.5 1.4±0.4

RR power MF 3.1±1.3 0.4±0.1

RR power HF 0.7±0.2 0.2±0.0

SBP mean 148.1±3.7 142.4±5.3

SBP variability 13.8±2.4 11.6±1.9

SBP power LF 23.5±4.0 18.1±5.0

SBP power MF 7.3±1.7 9.4±1.4

SBP power HF 0.4±0.1 0.6±0.1

BRS LF band 0.61±0.08 0.15±0.02

BRS MF band 0.92±0.15 0.33±0.04

BRS HF band 0.47±0.07 0.18±0.01

vagal influence [5]. Decreased RR power and unchanged

SBP power after vagal blockade lead to a decreased trans-

fer function gain across all frequency bands and conse-

quently lead to lower BRS estimates.

The results reported in Table 1 are in accordance with

those obtained via atropine bolus in normotensive rats [6],

except that no significant mean RR changes were observed

from baseline to atropine. This can be explained from the

fact that both MeA and atropine block vagal heart rate ef-

fects at the periphery while atropine exerts additionally a

central stimulating effect on cardiac vagal efferent activ-

ity [12]. Thus, our experimental protocol clearly induces

solely peripheral vagal blockade on the heart.

For the purpose of illustrating fuzzy logic modelling,

Fig. 3 presents the resulting surfaces for the same subject

represented in Figs. 1 and 2. It can be observed that the

MeA surface is flatter than that obtained for baseline con-

dition and thus surface variation (slopes) are lower in MeA

than in baseline for a given SBP value. This result is con-

sistent with the observed reduction in frequency domain

BRS estimates. Finally, Fig. 3(b) shows the same repre-

sentation as in Fig. 3(a) for one random replica in MeA

condition. Here, the RR values are randomly distributed

over y-axis and the SBP and RR relation is destroyed by

RR shuffling. Consequently, the resulting fuzzy surface

undulates around the median RR value for all SBP values.
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Figure 3. Dispersion diagrams with SBP and RR data

in Fig. 1 and 2, distinguishing baseline (grey) and MeA

(black) conditions, and highlighting the estimated fuzzy

surfaces (red). Fig. (a) and (b) display real and surrogate

data for MeA condition.

 

 

  



For each case (subject and condition), the modelling er-

ror δ was quantified for the real data and for the 100 sur-

rogate replicas, following Eq. (3). For the illustrative sub-

ject, Figure 4 shows that fuzzy logic modelling in real data

has lower error when compared with the random replicas,

pointing out that the amount of variability explained by

fuzzy models is statistically significant in both conditions.
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Figure 4. Number of random replicas (out of 100) per δ
value for baseline (grey) and MeA (black). Dashed lines

locate δ for the real data in Fig. 3.

The same conclusions were drawn for the remain-

ing subjects, namely that fuzzy logic modelling achieves

higher performance in real than in surrogate data (Fig. 5)).

Although there were no significant differences between

conditions (Mann-Whitney U test, p = 0.58), differences

between real and random δ tend to be lower in MeA condi-

tion. This was expected due to the dramatic effects of MeA

in RR mean and variability without SBP changes. How-

ever, fuzzy logic modelling under parasympathetic block-

ade still showed to be statistically significant against the

random model for all subjects.
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Figure 5. Boxplot of pairwise differences between δ eval-

uated for real data and averaged over 100 random replicas.

Finally, the model performance was associated with

markers of vagal and sympathetic activity. Namely, δ was

found to be positively correlated with SBP power in LF

(baseline, r = 0.97, p < 0.01; MeA, r = 0.88, p =
0.02) and not with RR power in HF (baseline, r = 0.60,

p = 0.21; MeA, r = 0.09, p = 0.87), evidencing that

models performance is stable over conditions with differ-

ent sympathetic and vagal activities. Future work will eval-

uate fuzzy logic models in conditions activating the sym-

pathetic branch of the autonomic nervous system.
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