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Abstract 

Automated interpretation of heart sounds holds great 
promise in increasing the diagnostic accuracy and 
consistency of cardiac auscultation and allowing for use in 
remote, tele-health settings. However, existing algorithms 
for classification of hearts sounds have been constrained 
by limited idealized training sets and methodological 
issues with validation. As part of the 2016 PhysioNet 
Challenge competition, we present an algorithm for 
automated heart sound classification that uses Hilbert-
envelope and wavelet features to attempt to capture the 
qualities of the heart sounds that physicians are trained to 
interpret. We perform a two-step classification of heart 
sounds into poor quality, normal or abnormal with 
sensitivity of 0.7958 and specificity of 0.7459. 

1. Introduction

Auscultation of heart sounds is a critical component of 
the physical exam and can lead to the identification of 
serious medical conditions. During the physical 
examination, auscultation allows the physician to gain 
some insight into the inner workings of the cardiac 
function without the use of any more complex diagnostic 
technologies. However, identification of pathological 
hearts sounds by ear is challenging in the most ideal 
environments, and become exponentially more difficult 
with ambient noise and other sounds, making the 
automated classification of heart sounds a powerful tool. 

1.1. Normal cardiac heart sounds 

The sounds heard during cardiac auscultation are caused 
by the flow of blood within the heart as the cardiac valves 
open and shut. The normal cycle of  heart sounds consists 
of two heart sounds (S1 and S2) separated by periods of 
relatively silence. The first heart sound (S1) is caused by 
the closure of the mitral and tricuspid valves at the start of 
cardiac systole (Figure 1). As the heart begins 
isovolumetric contraction, the increase in ventricular 
pressure causes the atrioventricular valves to close, 
preventing backflow of blood into the atria.  

Figure 1. Wiggers Diagram showing cardiac pressures, 
volume and electrical activity with corresponding 
phonocardiogram. Modified from figure by Daniel Chang 
MD, released under CC BY-SA license.  

No audible sounds are normally heard during the bulk 
of the systolic phase where the ventricles eject blood into 
aorta and pulmonary artery. The second heart sound (S2) 
occurs due to the closing of the aortic and pulmonary 
valves at the start of diastole. After the heart has completed 
ejection, isovolumetric relaxation of the ventricles leads to 
a pressure gradient between the aorta/pulmonary artery and 
the ventricle, leading to closing of the semilunar valves.  

As heart sounds are caused by abrupt changes in blood 
flow, opening of the heart valves typically does not 
produce an observable sound, while closing of the valves 
through which blood is actively flowing is clearly audible. 

Figure 2. Normal phonocardiograph from two cardiac 
cycles. Data from recording training-a/a0011 
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1.2. Pathological heart sounds 

A number of cardiac abnormalities can lead to changes 
in the observed heart sounds. These change are typically 
categorized into gallops, murmurs and rubs, each of which 
have different causes and different physiological 
implications  

Gallops are extra heart sounds that result in a 
“galloping” rhythm. The third heart sound (S3) can be 
observed during early diastole, after the S2. It is often 
benign in the young and during pregnancy, but in others, 
especially in the elderly, it is a pathological sign commonly 
associated with reduced systolic function. While the 
mechanistic origin of the S3 is not certain it is believed to 
be due to excess blood volume in the ventricle. The fourth 
heart sound (S4) occurs during late diastole, shortly before 
S1, and coincides with atrial systole. Atrial contraction 
rapidly forces blood into the ventricle, and in the presence 
of a stiff ventricle caused by diastolic dysfunction, an 
audible S4 is appreciable.  

Cardiac murmurs are caused by the turbulent flow of 
blood through a diseased valve.  Incompetency or 
insufficiency of a valve can lead to a backflow of blood 
across the valve, which may produce an audible murmur. 
In addition, stenosis or narrowing of a valve can occur due 
to thickening of the valve leaflets. This stenosis leads to an 
obstruction of flow across the valve, resulting a murmur. 
Murmurs are characterized by when they are audible 
(systolic or diastolic), which depends on the location and 
type of valvular disease, and by the quality of the audible 
murmur.  

Rubs are a “scratching” like sound caused by friction 
between layers of the inflamed pericardium in the setting 
of pericarditis.  

1.3. Automated heart sound classification 

Because changes in the heart sounds are often very 
subtle, the automated interpretation and classification of 
heart sounds has been of interest for many years. Many 
groups have developed algorithms for this purpose; early 
work focused on relatively simple thresholding techniques 
while recent advances in statistical learning have allowed 
for the application of neural networks and other machine 
learning methods to this problem [1]. 

Many existing algorithms appear to have been quite 
effective at the problem of heart sound classification. 
However, while these methods excel of interpreting 
recordings made in idealized settings, many fail to perform 
with high accuracy when used with ‘dirty’ recordings from 
realistic clinical settings, or recordings made with different 
types of recording equipment.  In addition, some 
algorithms have been trained and subsequently validated 
on the same data set, meaning that high levels of overfitting 
could be occurring in seemingly effective models of 

classification. 
In this manuscript, we describe an approach to classify 

heart sounds using features inspired by the way physicians 
are trained to interpret heart sounds. We use an extensive 
previously described data set of heart sound recordings 
from a variety of environments, perform feature extraction, 
and train a machine learning algorithm to classify 
recordings as normal or pathological.  

2. Methods

2.1. Data source 

Heart sound recordings were obtained from the 
PhysioNet database, as previously described [1]. Briefly, 
the database includes 4,430 recordings taken from 1,072 
healthy and cardiac disease patients in both clinical and 
non-clinical environments.  

2.2. Base signal features 

The PhysioNet Challenge sample entry provided a 
framework for further feature extraction and classification. 
The duration dependent logistic regression-based Hidden 
Markov Model [2, 3], trained using the “a” training set, 
was used to assign a cardiac cycle state to each segment of 
the phonocardiogram (PCG) recordings. 20 pre-defined 
features were extracted based on PCG values and the 
cardiac cycle state data. These included durations of each 
cardiac state (S1, S2, systole and diastole), ratios of each 
cardiac state duration, and ratios of mean signal amplitude 
in each cardiac state.  

2.3. Additional feature extraction 

Additional features were selected to attempt to mimic 
the process via which a physician interprets heart sounds. 
Physician heart sound interpretation focuses on timing, 
frequency and intensity of the audible sounds. While the 
base feature set captures information about state duration 
and mean amplitude, it does not capture the timing of 
audible sounds during the state, the quality of the sound or 
the intensity of individual sounds.  

To capture the overall intensity of heart sounds, the 
PCG signal was segmented based on cardiac cycle state 
and the Hilbert envelope during each state was found. The 
maximum value of the Hilbert envelope, and the area under 
the Hilbert envelope were used as metrics of overall signal 
intensity. Sound shape is also an important factor in 
identifying pathological sounds – for example recording 
with a “crescendo-decrescendo” murmur could have the 
same mean amplitude and area under the envelope as a 
low-intensity background noise. To capture this, the area 
above the Hilbert envelope and below the maximum 
envelope value was quantified during each segment 

 

 

  



(Figure 3). 
In order to capture the timing of sounds within each 

stage as well as the quality of the sound, each state segment 
was further divided into four equal-duration sub-segments, 
and the continuous wavelet transform of the signal during 
each sub-segment using the Coifman fifth order wavelet 
with integer scales from 1 to 32 was obtained. The mean 
value of the transform at each scale was included as a 
feature for each of the sixteen sub-segments (four cardiac 
cycle states times four sub-segments per state).  

Figure 3. Hilbert envelope based features were used to 
capture sound intensity and sound shape 

2.4. Classifier training 

The classification problem was divided into two sub-
classification tasks. First, PCG recordings were classified 
as noisy or adequate for further evaluation. Second, 
recordings determined to be of adequate quality were 
classified as normal or pathological.  

A number of different classification models were 
considered for use including support vector machines, 
decision trees and neural networks. All models were 
implemented using the built-in functionality in MATLAB 
2014b based on the initial requirements of the Challenge. 
For both tasks, each model was trained and validated using 
10-fold cross validation with a balanced training set.  

3. Results and discussion

3.1. PCG segmentation 

Segmentation of the underlying signal into phases of the 
cardiac cycle was initially performed using a provided 
Hidden Markov Model. However, it was noted during the 
course of the competition that this model failed to 
accurately segment many recordings. In our experience, 
segmentation clearly failed to segment signals with 
murmurs during the early and late stages of systole and 

diastole, instead selecting those murmurs as part of the 
preceding or following S1 or S2.  A set of hand annotations 
was later provided for the competition; however, while the 
remainder of the feature extraction and classification on the 
training set could be performed with the manually 
annotated segmentation, the algorithm for the hidden test 
set relied on the less reliable Hidden Markov Model 
segmentation algorithm. Because further processing steps 
depended on having segmented recordings, it was 
necessary to continue to use this provided algorithm. 

3.2. Wavelet features 

Wavelet features were used for detection of timing and 
quality of heart sounds during each beat.  Wavelet features 
from idealized recordings are shown in Figure 4. Clear 
differences in the feature set are seen in cases of three 
different murmurs. 

Figure 4. Wavelet values for normal (A), holosystolic 
murmur (B), mitral stenosis (C) and aortic stenosis (D). 
Areas of interest marked with arrow. 

However, several issues were noted with the use of 
wavelet based features. First, moderate differences were 
noted in the character of the S1 and S2 across many 
recordings. While the wavelet features did recognize the 
presence of murmurs, they were of relatively low intensity 
and small changes in the position of highest intensity in S1 
or S2 likely masked small changes due to murmurs. Further 
improvement of the wavelet features could emphasize 
features during systole and diastole and remove wavelet 
features from the S1 and S2 phases. Second, incorrect 
segmentation of the cardiac cycle phases led to the 
identification of early systolic murmurs as part of the S1 
phase. Because the wavelet features divided each phase 
into 4 equal segments, the murmurs were buried within the 
overly-extended “S1” segment. 

 

 

  



3.3. Classification 

The signal quality classification task was performed with a 
variety of machine learning techniques (Table 1), and 
bagging trees was determined to be the most effective 
classification algorithm.  

Table 1. Mean training and validation accuracy for signal 
quality classification task  

Type of classifier TA VA 
Bagging trees 1.00 0.94 
Boosted trees 
(LogitBoost) 

0.97 0.93 

Logistic classifier 0.87 0.85 
Support vector machine 1.00 0.91 

The normal/abnormal classification task was then 
performed using those signals that were identified as being 
of good quality. Validation accuracy was measured using 
10-fold cross validation. The boosted trees classifier using 
LogitBoost was selected for classification based on its 
highest validation accuracy (Table 2) 

Table 2. Mean training and validation accuracy for 
normal/abnormal classification task  

Type of classifier TA VA 
Bagging trees 
(100 learners) 

1.00 0.76 

Boosted trees 
(LogitBoost) 

0.93 0.76 

Boosted trees 
(AdaBoostM1) 

0.86 0.75 

Boosted trees 
(RobustBoost) 

0.89 0.75 

Logistic classifier 0.80 0.72 
Support vector machine 1.00 0.20 

3.3.  Competition results 

The resulting algorithm achieved a sensitivity of 0.735 
and a specificity of 0.746, for a score of 0.741 on a random 
subset of the test set. Classification of the full test set 
resulted in a sensitivity of 0.7958 and specificity of 0.7459 
for a final score of 0.7708 
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