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Abstract

We present algorithms to distinguish between healthy
and diseased condition of the heart, based on the analy-
sis of phonocardiograms. The software tries to mimic the
decision-making process of a cardiologist by identifying
heart beats (S1 and S2), finding extra sounds and murmurs
while ignoring all kinds of artefacts and noise.

Two different solutions have been submitted to the Phy-
sioNet Challenge 2016: The entry for phase I aims to re-
construct the signal of an ideal heartbeat by calculating
the median of an overlay of all beats of a recording. An
LVQ-classifier, trained with the ideal beat of 3240 PCGs
of the challenge training set, achieved a specificity of 0.85
and a sensitivity of 0.40, resulting in a total score of 0.63.

Our entry for the official phase of the challenge searches
for abnormalities in every single beat of a PCG. The re-
sults display a sensitivity of 0.91, a specificity of 0.29, and
a total score of 0.60.

1. Introduction

Examination of heart sounds by use of a binaural stetho-
scope is a common part of almost every medical check-up.
Bedside or long term monitoring of heart disease patients,
however, is still mainly focussed on continuous ECG, al-
though valve diseases, which show an increasing preva-
lence in ageing societies, can be detected inexpensively by
evaluating phonocardiograms (PCGs) [1].

In contrast to electrocardiograms (ECGs), for which
standardised protocols ensure constant quality of the sig-
nals, the signal quality of a (PCG) is often variable.
Recordings are frequently interspersed or even dominated
by background noise, respiratory sounds or other distur-
bances, which have similar spectrum and energy properties
as heart sounds and murmurs [2].

2. Algorithm

Phase I entry: A first approach to read parameters from
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noisy and low quality recordings is to uncover the signal of
an undisturbed (”idealised”) heartbeat for each PCG.

The first step of the algorithm is the detection of heart-
beats. For further analysis only the intensity of the signal,
estimated as Hilbert amplitude envelope, is considered.
Windows comprising single beats are extracted, superim-
posed and averaged. The final idealised beat is cleaned
from random artefacts as well as from background noise
and short-term disturbances.

Descriptors derived from this single beat by binning are
used for training models by application of learning vector
quantisation (LVQ) [3] and multilayer perceptrons (MLP)
[4].

Official phase entry: A second algorithm analyses the
individual heartbeats of a PCG recording regarding pres-
ence of abnormalities, such as extra sounds, murmurs or
split sounds.

The identification is based on frequency and time bin-
ning over each heart cycle and subsequent searching for
relations between signal components [5].

Identified abnormalities of each kind are summed up
and result in a feature vector with 8 values (S3, S4, sys-
tolic extra sound (SeS), diastolic extra sound (DeS), sys-
tolic murmur (SyM), diastolic murmur (DiM), S1 split
(S1-split) and S2 split (S2-split)) which describe the level
of abnormalities of each PCG. Values for S3, DeS and the
number of split sounds are normalised by the number of
beats found. Values for S4, SeS and the murmurs are not
normalised as even rare events are considered to indicate
pathological status.

A classifier is trained to build a predictive models that
discriminates between Normal and Abnormal.

2.1. Dataset

Training of the predictors is performed with the dataset
of the PhysioNet Challenge 2016 that comprises 3240
PCGs of healthy subjects and patients (2575 annotated as
Normal, 665 as Abormal). The dataset unites PCGs from
different sources and provides a heterogeneous training
base, comparable to what the software will encounter in
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clinical practice [6].
2.2. Frequency analysis

The frequency bands are extracted by a windowed
Fourier transformation with a Hanning window of length
128ms by using the R packages seewave and f ftw with-
out zero-padding [7, 8]. In order to make the analysis
independent from sampling rate and to speed up subse-
quent computational steps, the resulting time-dependent
frequency spectrum is resampled to a rate of 100 Hz.

Amplitudes of frequency bands are derived from the
spectrogram by integrating over 10 ms bins and the fre-
quency ranges given in table 1.

Table 1. Frequency bands for beat and feature recognition.

Name Frequencies [Hz] | Name Frequencies [Hz]
low 20-50 hf3 450-550
beat 20-250 hf4 550-650
high 50-150 hf5 650-750
hfl 250-350 hf6 750-850
hf2 350-450 hf7 850-950

2.3.  Heart beat detection

For the phase I entry beat detection is performed based
on the envelope, for the official phase entry based on the
frequency band beat in several steps: Firstly, a baseline
correction is applied by subtracting a spline, fitted through
the minima of the band. Next, the band is normalised to
the 95%-percentile. Then, raw beats are extracted as local
maxima of 100 ms windows after verification that there is
no background noise (i.e. artefact) in this region.

Beats are extracted from the resulting list of raw signals
in two steps: As the S1-S2-distance is considered to be
the most conserved value in the raw series of sounds, S1-
S2 is defined as the maximum of the density function of
differences of consecutive raw sounds in a range of 180—
400 ms. The S1-S1-distance is estimated from the list of
S1-S2-pairs as maximum of the density of the differences
of S1 values in a range between S1-S2 and 1.5 s.

Finally a raw S1-S2-pair is only accepted as a beat, if a
second pair is present before or after in a distance of ap-
proximately S1-S1.

In addition, a minimum of 0.6 beats per second is de-
manded. Both bands beats and low are analysed and the
filter limits are iteratively weakening, if necessary.

2.4. Artefact elimination

For artefact detection, the energy in the bands Af2, hf3,
hf4, hf5, hf6, hf4 is determined for a time window (of

60 ms) around a raw beat or feature. If the energy of a
band is 1.2 times higher than the global average of the re-
spective band, it is marked as active. If at least four bands
are active for more than 50% of the time window, the sound
is treated as an artefact.

During raw beat detection all artefacts are checked for
equal distribution, as equal distributed artefacts may indi-
cate long term high frequency murmur.

2.5. Feature detection

The data preparation (frequency analysis, beat detec-
tion, artefact elimination) delivers a dataset comprising of
the frequency bands and a list of heartbeats. This dataset
allows for analysing each single beat for presence or ab-
sence of features linked with disease:

S3 extra sounds are diastolic sounds, observable in the
PCG after S2. The filter detects S3 by searching for peaks
in the band beat from 110-210 ms after S2.

S4 extra sounds are disatolic sounds hearable before
S1. S4 are searched as peaks in the band beat at 220-80 ms
before S1.

Other diastolic extra sounds (DeS) are defined as peaks
in the band beat in a range of 50-110 ms after S2 (opening
sound from mitral or tricuspid valve).

Systolic extra sounds (SeS) are defined as peaks in the
band beat between S1 and S2 with a minimum distance of
75 ms to S1 and S2.

Systolic (SyM) is identified, if a minimum of three of
the bands hf1, hf2, hf3, hf4 show an energy of 10% of the
average of S1 and S2 in band beat for at least 20% of the
time between S1 and S2. Is the duration less then 20%, the
median energy of band high is computed before, after and
between the heart cycle and compared with one another.

Diastolic murmur (DiM) is searched for in a time range
from 70 ms after S2 to 20 ms before the next S1. DiM is
identified, if a minimum of three of the bands Af1, hf2, hf3,
hf4 show an energy of 10% of the average level of S1 and
S2 in band beat for at least 10% of the time observed.

Splitted heart sounds (S1-split, S2-split) are detected,
if in a range of &= 100 ms around S1 or S2 two maxima are
detected.

2.6. Classification

After feature detection, each PGC is characterised by an
8-dimensional vector consisting of one score per feature.
The vectors are z-score normalised and a LVQ model with
100 codebook vectors is trained for 5000 steps with the
Ivq1- and for additional 5000 steps with the lvq2-algorithm
[3,9]. Prediction is performed with a k-nearest neighbour
classifier that allows for selecting the number of neigh-
bours k and a distance threshold. During development the
model is tested applying 33% cross-validation.



A multilayer perceptron comprising 2 hidden layers
with 12 and 8 neurons is trained as additional classifier [4].

3. Results

The phase I entry has been applied to the 3126 PCGs
of datasets a—e of the unofficial phase of the challenge.
Envelope-based beat detection was successful for 3035
PCGs. No beats were found in 91 PCGs. Figure 1 shows
an example for the reconstructed ideal beat of an abnormal
PCG. The blue bins visualise 19 descriptive values used for
classification.

envelope [normalised Hilbert]
4

time from S1 [ms]
Figure 1. Superimposed heart beats of sample a0058: Al-
though the recording shows differences from beat to beat,
an idealised signal can be reconstructed (red curve). The
blue boxes indicate the bins used for classification.

Cross validated results on the challenge training set, us-
ing LVQ and a 1-nn predictor give a selectivity of 0.65, a
specificity of 0.76 and a score of 0.70. The same model
achieves a score of 0.63 on the hidden validation set of the
challenge. Comparable results are achieved with the neural
net: selectivity: 0.68, specificity: of 0.74 and score: 0.71.

Beat detection of the 3240 PCG recordings of the chal-
lenge datasets a—f have been performed with the official
phase entry. A minimum of 6 beats was found for 3035
PCGs. Cross validated results on the training set display
a specificity of 0.29, a sensitivity of 0.91 and a score of
0.60. The score for the hidden validation set is identical to
the cross-validated result (sensitivity 0.29, specificity 0.91,
overall 0.60).

As an example, identified abnormalities for recording
b0106 (annotated as Abnormal, patient suffering from
CAD) are listed in table 2. Figure 2 displays raw wave-
form, spectrogram and amplitudes of the frequency bands.
The beats before 0.5 s and after 7.0 s are not selected by
the algorithm, because of background noise. S1 splits at
0.65 s and 3.05 s as well as S2 splits at 5.8 s and 6.4 s are
detected in the band beat. An S3 extra sound is recognised
at 6.6 s in the bands beat and low. A diastolic murmur is
detected after S2 at 6.93 s.

Table 2. Detected features for an example PCG (b0106
of the challenge dataset annotated as Abnormal). S1-S2 is
estimated as 0.268 s, S1-S1 as 0.600 s.

S1[s] S2[s] Features
0.655 0915 Sl-split
3.045 3.315 Sl-split
5485 5755 S2-split
6.085 6.355 S3, S2-split

6.665 6925 DiM

4. Discussion

The basic idea behind our phase I entry was the hypoth-
esis that heart diseases lead to typical distortions of the
heartbeats in PGCs, which are present in all beats but not
always recognisable because of noise and other sounds.
We could not verify this hypothesis. In contrast, it turns
out that for most patients the abnormalities appear only in-
frequently. Consequently, abnormalities are averaged out
during reconstruction of idealised beats and as a result a
majority of the idealised Abnormal beats still look Normal.

Knowing this, the software should not be able to detect
any of the Abnormal recordings. Most probably the (lim-
ited) predictive power of the entry results from bias in the
dataset, like the high correlation between patient age an-
notation (almost all Normals are young persons; almost all
Abnormals are elderly patients). Correlation between age
and heart rate variability (HRV) is well known and HRV
is registered in the idealised beats as width of the peaks.
We therefore assume that the software predicts the age of
study subjects rather than their diseases.

As a consequence we have built the official phase en-
try differently with the aim to detect abnormal features in
every single beat. The resulting tool reliably detects ab-
normalities (i.e. extra sounds, splits and murmurs) with
a high sensitivity (>90% of Abnormal PCGs are recog-
nised). However, abnormal features are detected in hun-
dreds of Normal recordings, too. Detailed inspection did
not reveal significant differences between true disease and
the false positives, neither in frequency of features nor in
strength of the signals.

The only interpretation of this is that many of the PGCs
marked as Normal, display evidence for heart disease,
which however is not audible during a manual examina-
tion with a stethoscope or is an innocent or benign mur-
mur. Further investigation is necessary to decide, if these
subjects need to be re-classified because of a present (but
so far unrecognised) heart disease.

Of course, more information, such as knowledge of the

location of auscultation, position and age of the patient, is
essential for reliable diagnosis.
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Figure 2. Example result for frequency analy-
sis, beat and feature detection for PCG b0106
of the PhysioNet Challenge 2016 dataset: a)
Raw waveform, b) spectrogram and c¢) fre-
quency bands. The red and blue diamonds in-
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5. Conclusion [3]

We present tools for the analysis of phonocardiograms.
Our official entry to the PhysioNet Challenge 2016 recog-
nises abnormalities in PGCs with high sensitivity and ac-
curacy. Still, automated diagnosis is not possible with the
software, because too many abnormalities are detected in
the recordings of healthy subjects as well.

Potential applicability of the software includes decision
support for physicians: the software can identify potential
abnormalities and display them as graphics or list. This
way, the attention of the cardiologist is drawn to meaning-
ful regions of the PCG. Responsibility for interpretation of
the findings and for diagnosis stays with the physicians and
must be based on their experience.
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