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Abstract 

Digital signal processing techniques have been applied 
to analyze physiological signals for decades.  Recent 
progresses in other fields, such as computer vision and 
machine learning, are attracting people to utilize such 
technologies for analyzing physiological signals.  In this 
paper, recurrent neural network, often used in deep 
learning for time series signals, is applied to detect 
anomalies in heart sound.  We successfully detected 
anomalies with 80% accuracy when augmenting the 
signals with other features. 

1. Introduction

Physiological signals are good sources of information 
for physicians to analyze the health conditions of patients.  
Of the different types of physiological signals, heart 
sound and electrocardiography are the most common 
sources of information. Electrocardiography (ECG) is a 
process that records the electrical activity of the heart 
over a period of time using electrodes placed on the skin. 
ECG provides physiological signals related to the status 
of the heart. While medical equipments for recording, 
displaying, sharing and transferring ECG are usually used 
in hospitals and medical facilities, heart sound -- another 
type of cardiac signals, which can be observed with 
simpler equipments to perform similar functions, is still 
used by most primary care doctors. 

1.1. Processing heart sound 

Acoustic signal, the form of heart sound, has been 
studied heavily during the last few decades, thanks to 
various digital signal processing techniques. The general 
concept of acoustic signal processing is to apply a series 
of operations on one-dimensional signals called time 
series. For instance, speech recognition usually includes 
the following operations: digitization of analog signals, 
digital filtering, the cepstral transformation, the hidden 
Markov model, phonemes sequence generation, etc. 
However, in recent years, it has been shown that the 
accuracy of speech recognition can be improved by 

utilizing a different series of operations, most notably 
deep neural networks[1]. 

Another application of deep neural networks, which 
gained significant improvements during the last ten years, 
is image classification. In several well-recognized 
competitions among researches from either academia or 
industrials (such as ImageNet Large Scale Visual 
Recognition Competition (ILSVRC)[2] and PASCAL 
Visual Object classes (PASCAL VOC)[3]), deep neural 
networks that consist of tens of convolutional layers in 
neural networks of different topologies often outperform 
traditional, computer-vision-based technologies[4-7]. 
People now believe that deep neural network, when 
equipped with enough data and sufficient computation 
power, is capable of extracting features of higher 
complexities. As a result, those extracted features provide 
more insights on the finer details inside images than the 
manually crafted features, previously developed and 
commonly used in computer-vision application. 

1.2. Using deep neural network 

Since acoustic signals are one-dimensional and 
conceptually simpler than the more complex two-
dimensional signals, like images, people also believe it 
would be possible to apply deep neural networks on 
acoustic signals and let the network extract features for 
classification. We follow such belief and adopt the state-
of-the-art recommendation on image classification to 
build our own deep neural networks. With our network 
and training set provided by Physionet[8], we could 
achieve 80% overall accuracy with the revised scoring 
function. Based on experiences gained from other 
applications of deep neural networks, we believe that the 
results can be further improved by increasing the depth of 
the networks and by training the networks with more data 
in order to avoid overfitting. 

2. Data preparation

2.1. Temporal segmentation 

For each wave file, we performed the following 
transformation and converted it into a few samples.  First, 
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we defined an observation window to be 4.8 seconds in 
temporal domain. We discarded any wave file that was 
shorter than 4.8 seconds. On each wave file, we applied 
the observation window with 50% overlap, and discarded 
the last window if it was shorter than 4.8 seconds. As 
such, a wave file of 15.9 seconds in length was converted 
into five samples whose temporal intervals were [0, 4.8], 
[2.4, 7.2], [4.8, 9.6], [7.2, 12.0] and [9.6, 14.4] seconds, 
respectively. The last window whose temporal interval 
was [12.0, 15.9] was shorter than 4.8 seconds and hence 
was discarded. 

2.2. Labeling 

These samples from previous conversion were labelled 
according to its original wave file.  In the original 
labelling scheme, we chose to enforce with either 
“anomaly” or “normal”.  In the revised labelling scheme, 
an additional label, i.e. “noisy”, was added.  Note that we 
did not utilize segmented information about noisy 
intervals from signal quality files.  The reason was due to 
the noisy duration not always being aligned with the 
observation windows.  The misalignment could introduce 
mislabelling and thus lower the accuracy of ground truth. 

2.3. Using training to extract augmented 
features 

In addition to the above data, a few augmented features 
were included into the sample. The concept to include 
augmented features was inspired by ResNet[9]. In this 
paper, the author proposed convolutional neural networks 
whose learning parameters are the residual of original 
network.  Therefore, the network was trained to find the 
residual weights, rather than the actual weight, for layers 
of convolutional neural networks. For example, if an 
original layer was y = f(x), where x was the output of the 
previous layer. F(x) is usually a matrix multiplication, 
where its elements, i.e. weights, were to be found during 
the training stage. For later discussion, we denote the 
matrix by M and assume y = M * x for simplicity. The 
author of ResNet suggested that instead of directly 
finding elements of M through the training, the network 
can be rewritten as y = x + H * x. It is easy to see M = H 
+ I, where I is the identity matrix, and H acts like the 
residual. Since the two expressions, y = M * x and y = x + 
H * x, are equivalent, once M = H + I, the networks built 
from both expressions are mathematically equivalent. 

However, the residual network proposed by the paper 
showed significant improvement over the original 
network in both accuracy and training speed. The author 
argued that the training became easier in the sense of 
finding optimal weights. Equipped with the better speed 
of the training stage in ResNet, the author increased the 
depth of the network in order to improve the classification 

power of the network. With sufficient amount of training 
data, the author showed the network outperformed any 
other network in image classification while the training 
speed was still within acceptable range. 

The key point in this paper on deep learning neural 
networks for image classification suggests that even a 
network can be trained to learn weights and can classify 
images with great accuracy; its mathematically equivalent 
network may still learn faster and perform better 
classification.  Being able to train the equivalent network 
loosens requirements on computation power and 
constraints on network depth. 

We therefore added two main features in our data 
preparation stage.  First, we performed windowed 
Discrete Fourier Transform (DFT) on each data sample. 
The window size was selected as 256 points, and 50% 
overlap between two consecutive windows.  The 
magnitudes of the lower half of DFT coefficients were 
included in that data sample as the magnitudes of all DFT 
coefficients are symmetric. Second, the variance and the 
standard deviation of that window were also included. 
The selection of these two types of information was 
inspired by several facts. In digital signal processing, 
analysis in frequency-domain is common and has been 
proven useful. It also gives information invariant to 
temporal location. As we saw in 2.1, the temporal 
locations of observation windows to form data samples 
were chosen arbitrarily. In order to give the neural 
networks sets of information that were temporal location 
invariant, DFT was a good option. 

Another reason to add DFT was that while the 
transform itself can be easily done in neural networks, as 
it was a matrix multiplication, magnitudes of coefficients 
could not easily be learned in the networks. To reduce 
computation requirements, such conversion was a 
preferred treatment during the data preparation stage. 

The second set of augmented information, the variance 
and the standard deviation, was selected based on a 
similar concept. Also note that both the variance and the 
standard deviation were good estimates of loudness in 
acoustic wave files.  They provided the neural networks 
with information similar to the envelopes of heart sound. 

3. Neural networks

The commonly used neural network architecture of 
time series is recurrent neural network (RNN)[10]. 
Contrary to feed-forward neural network or convolutional 
neural network, RNN is able to ‘memorize’ history inside 
each data sample. Such capability is strongly preferred for 
extracting causal features in time series. The time interval 
between extracted causal features can vary.  In other 
words, RNN is capable of finding two relevant events 
even if the time lag between their occurrences varies 
among data samples. In the sample codes provided by this 
competition, the envelopes of heart sound were extracted 

 

 

  



with the help of the Hilbert transform and segmentation 
was performed by the hidden Markov model (HMM) and 
logistic regression [11][12]. As this approach suggested, 
the intervals of heartbeats in one wave file were 
considered as features and thus extracted. Since heart rate 
irregularity is an indicator of possible heart anomaly, that 
set of features was fed to the support vector machine in 
sample codes to detect anomalies.  The RNN integrates 
those stages into one single network. 

3.1. Detecting irregularity 

In order to construct RNN for detecting such 
anomalies, we enforce a limitation on the minimum 
length of observation window, and use 4.8 seconds in our 
current design.  If the window is too short such that it 
contains only two heart beats, the network will have no 
information to determine the irregularity of heart beats. 

3.2. Detecting murmur 

The other possible anomaly is murmur in heart sound.  
We believed a good feature to detect that type of acoustic 
signal was in frequency domain. However, RNN must 
know to look into murmur signals within certain temporal 
locations, namely around heartbeats. We augmented the 
data samples with DFT coefficient magnitudes to make it 
easier for RNN to jointly locate heartbeats and murmur in 
both temporal and frequency domains. 

The first layer of our RNN is Gated-Recurrent-Units 
(GRU)[13] with 386 features. The next layer is a dropout 
layer[14], with dropout rate = 0.5. The third layer is 
another GRU, whose output is 8 features. The last layer is 
a fully connected layer with three label outputs. The first 
layer feeds its output back to its own during each 
timestep. The second GRU outputs its result at the end of 
the data sample. The number of timesteps in one data 
sample is 75. 

The above hyper-parameters were chosen from the best 
result in cross-validation after grid search on different 
combinations of possible hyper-parameters. The topology 
was chosen based on the size of the dataset to avoid 
overfitting. 

4. Training, validation and inference

The total number of data samples was about 420,000. 
One fifth of the data samples, randomly selected, were 
used for cross-validation.  At least 2,000 epochs of 
training was done during grid search for hyper-
parameters. The final hyper-parameter was used with 
4,000 epochs of training. After the training, the model, 
including weight file and network file, was saved for 
inference stage.  At the inference stage, the wave file was 
processed with the same data preparation procedure. Then 

the model was used to process each data sample to 
generate the inference results. A simple max argument 
voting scheme was used to select the final label for that 
wave file.  That is, the most likely label among all data 
samples from one wave file was selected as the label of 
that wave file. 

To submit results to the test server, we slightly 
modified the initialization step in inference to reduce 
setup time.  It is likely the deep learning framework, i.e. 
Theano, needs to compile computation graph into GPU 
codes, which takes a long time at the beginning. We 
initiated the compilation process in setup.sh with a 
dummy wave file to save time. 

The following figures show how the network learned 
in terms of accuracies and loss during training stage. 

Figure 1: The upper subplot shows accuracies of 
training and validation sets.  The lower subplot shows the 
loss function of those two sets. 

5. Results

Our results achieved a top-10 ranking during phase 
one, with overall accuracy at 84%. With revised scoring, 
the overall accuracy dropped to 79%. 

 Several other attempts were made to improve the 
overall accuracy. While the accuracies from those 
attempts were not improved, one specific attempt, based 
on simplified three-layer one-dimensional convolutional 
network, increased specificity from 82% to 83%. Because 
convolutional neural network is well-studied and better 
supported in most deep learning frameworks compared to 
RNN, we believed it was possible to combine both 
networks to gain better performance. For example 
Caffe[15] added RNN support just two months ago.  

6. Conclusion and future work

We proposed an end-to-end process to classify acoustic 

 

 

  



physiological signals based on recurrent neural networks. 
To make the network easier to train, we augmented the 
data with features extracted from common digital-signal-
processing techniques. The results showed a simple 
network was able to classify signals with around 80% 
accuracy. 

While our results were not significantly better than 
other traditional approaches, the framework and 
technique we proposed can be easily extended when more 
data becomes available. Many researchers in deep 
learning also believe the deep learning techniques will 
outperform traditional methods when more data is 
available during training. To extend our network, we 
suggest knowledge transfer between networks -- the 
commonly used approach in convolutional neural 
network in image classification, object detection or 
segmentation.  To be specific, a model trained with a 
particular data set can transfer its knowledge by exporting 
its learned weights.  Another model on the same data set 
or same model on a different data set can load the entire 
or a part of the exported weights.  The knowledge from 
the previous model is embedded into the weights and 
further training could add new knowledge into them.  
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