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Abstract

In this study, we propose a decision tree classifier of
heart sound signals.

We determined repetitive fundamental heart sound seg-
ments based on adaptive similarity value clusterization of
the sound signal, and we created a set of filters for deci-
sion tree parametrization. Using the filters together with
inter-segment timings, we created three sets of markers: a
set utilizing both S1 and S2 identification, a set where only
one segment was identified, and a set without any identi-
fied segment. An individual classification tree was trained
for each marker set.

As a result, our classifier attained sensitivity (Se) of 0.66
and specificity (Sp) of 0.92 and overall score of 0.79 for a
hidden random (revised) subset.

1. Introduction

Phonocardiograph (PCG) is a recording of the sounds
made by the heart. In this study we describe our approach
to the Physionet/Computing in Cardiology Challenge 2016
[1]. Our aim was first to reliably identify the most distinct
and repeating fundamental heart sound (FHS) segments
[2], and then to analyze the energy content of the sig-
nal during FHSs and between them on multiple frequency
bands.

2. Methods

We divided our approach into a preliminary step and
three independently and interdependently iterable steps.
The preliminary step was data analysis consisting of elec-
trocardiography (ECG) based model of fundamental heart
sound detection from PCG, and introducing PCG-based in-
terdata energy models (convolution kernels or FIR filters)
for a proper FHS detection. In the first step a FHS-based
highly correlating and consistent energy model detection
and decomposition method was introduced. In the second
step several PCG markers were defined. In the third step
an entropy model based decision tree was formed.

2.1. Electrocardiography-based event de-
tection and domain translation

Utilizing ECG data from set training-a, QRS complexes
were extracted with strict criteria so that only high-quality
events were accepted.

ECG-based events were extracted with a nonlinear win-
dowed and smoothed peak-valley detector and a similar
clusterization process we describe in this study as used for
FHS clusterization. ECG-based QRS complex detections
were translated into PCG domain as potential locations for
S1 type FHSs. The actual S1 segment was selected by find-
ing the most common 250 ms window from PCG within
250 ms of the ECG-based QRS complex energy maximum.
This was achieved by calculating mutual event similarity
values in moving 250 ms window. The similarity value
(sim) was defined as:

sim(A,B) =


cov(A,B)

cov(A,A)
,cov(A,A) ≥ cov(B,B)

cov(A,B)

cov(B,B)
,cov(A,A) < cov(B,B)

(1)

, where A and B are windowed events, cov(x,y) is the co-
variance of x and y. By aligning the mutual event similarity
value maxima on a single event, a per similarity value ker-
nel time domain normalization factor was found. By com-
bining the time domain normalized similarity value max-
ima, an S1 event was defined. The combining criteria in-
cluded a stop criterion that only correlating enough kernels
were used. The S1 events were ranked by multiplying the
count of used kernels with the average of local similarity
value maximal values.

The same approach was repeated for S2 with the as-
sumption that S2 is in [QRS+0.4*RR/2, QRS+0.5*RR/2],
where RR is the local QRS interval.

2.2. Time-frequency surfacing using lim-
ited time discrete Fourier transform

Utilizing the FHS event input from the previous step,
and later from other iterative sources and the reference
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event set, time-frequency surfaces were formed. For each
sample in data in [S1-200 ms, S1+800 ms] and [S2-200
ms to S2+800 ms], a discrete Fourier transform in a 250
ms wide SRS flattop window was calculated:

w(n) = 1.0− 1.93 ∗ cos( 2πn

N − 1
) + 1.29 ∗ cos( 4πn

N − 1
)

− 0.388 ∗ cos( 6πn

N − 1
) + 0.028 ∗ cos( 8πn

N − 1
) (2)

, where N is the window width in samples.
Events within 500 ms to data boundaries were dis-

carded. From each of these per data transforms both an
average transform surface (avg) and standard deviation
(stdev) were stored. The stored transforms were combined
as representative surfaces in three patient group contexts:
all data and data classified either as normal or abnormal.
The aim of the representative surface was to denote the
interdata concurrent frequency components near FHS seg-
ments. This was achieved by normalization:

avgcom(t, f) =

∑N
n=1 avgn(t, f) ∗

1
stdevn(t,f)∑N

i=1
1

stdevn(t,f)

(3)

, where N is the total number of data. The resulting sur-
faces (avgcom) were interpreted per training set to verify the
differences between normalities and abnormalities. The
deviation value was used as an inverse quality marker.

A set of convolution kernels was constructed by sub-
tracting the average baseline frequency components from
the frequency components at both FHSs (S1, S2) and by
committing inverse Fourier transform for each subtracted
set. These convolution kernels represented concurrent av-
erage energy signatures of S1 and S2 in each of the three
patient group contexts.

2.3. Phonocardiograph event detection and
decomposition

The actual PCG event detection (trigger) consisted of
two sequential steps: an energy norm based trigger and
a concurrent segment extractor. Our energy norm was
defined by first filtering data with predefined convolution
kernel. The resulting translated signal (Xf) was then non-
linearly squared utilizing the Blackman window function
wblackman [3]:

Xe(x) =
N−1∑
i=0

(Xf (x−N/2 + i) ∗ wblackman(i))
2 (4)

, where x is a data sample, N is the desired window length
and Xe is the resulting energy signal.

For detecting preliminary events, a per-data threshold
value was defined by arranging local energy minimums

and maximums and by selecting the nth most represent-
ing value as limit. After this, local maximums above the
threshold value were chosen as preliminary events.

To extract FHS segments, similarity values (see Equa-
tion 1) for each preliminary event were calculated in a 250
ms wide window in the same way as described in the ECG-
based event detection. A preliminary set of clusters was
formed by calculating the maximum similarity value near
each preliminary event. If similarity value was above a
static cut-off limit, the event was assigned to a preliminary
cluster. The preliminary clusters were ordered by the av-
erage similarity value of their assigned events. The less
similar half of preliminary clusters was discarded. The re-
sulting set of preliminary clusters was trialed in order to
form final clusters. Adaptive criteria was introduced: first,
a cluster must consist of at least three events; second, the
time-bias-corrected similarity value of the events must re-
main above 0.8; third, an event can belong only to one
cluster. The preliminary clusters were tried until either all
preliminary clusters were used or both FHS segment clus-
ters S1 and S2 were found. If all preliminary clusters were
used without a clear distinction between S1 and S2, the
data was labeled to contain only a single heart sound seg-
ment cluster (ss). The certainty was defined by dynamical
intracluster minimal event similarity value limit which is
always above 0.8 and above 0.95 in most cases. If no clus-
ter reached the certainty limit, the data was labeled untrig-
gered (remainder). If two clearly distinguishable clusters
were found, they were labeled as S1 and S2 (s1s2). This is
if the shortest distance (d) between an event in one cluster
and an event in the other cluster must be in a reasonable
window:

0.2 ∗ SS < d < 0.8 ∗ SS, d < 500 (5)

, where SS is the shortest distance in milliseconds within
an event cluster. In addition it was verified that the clusters
didn’t contain any events within event distance less than
1.25 times d. If no such event was found, the preceding
cluster was labeled as a S1 segment and the subsequent
cluster as a S2 one.

2.4. PCG markers

Using the set of filters and inter-segment timings, we
created three sets of markers: a set utilizing both S1 and S2
identification (s1s2), a set where only a single heart sound
(S, assumed to be either S1 or S2) is identified (ss), and
a set without any detected repetitive heart sound (remain-
der). Set sizes are shown in Table 1.

The markers in the s1s2 set utilized five data segments
per cardiac cycle: s1: [S1-100 ms, S1+100 ms], s2: [S2-
100 ms, S2+100 ms], s1 s2: [S1-150 ms, S1+SS-150 ms],
s2 s1 [S2+150 ms, S2+SS-d-150 ms] and base [S1-125

 

 

  



ms, S1-75 ms], where S1 and S2 are the times of the iden-
tified S1 and S2 respectively, and the SS and d the mini-
mal SS and s1s2 distances as already described. For the
ss set three segments per FHS were defined: s: [S-100
ms, S+100 ms], s s [S+150 ms, S+SS-150 ms] and base
[S1-125 ms, S1-75 ms]. In remainder set, the signal was
divided into sequential 3 second segments (seg).

After defining the segments, the minimum and maxi-
mum standard deviation values in 100 ms windows (STD)
were calculated for each segment. The median values over
all the similar segments (over all the beats in s1s2 and ss
sets, and over all 3 second windows in remainder set) de-
fined the final min and max estimates. The procedure of
these min and max estimates was then repeated after filter-
ing the data with a four pole Chebyshev bandpass filters in
varying bandwidths.

All the min, max and max-min estimates were used as
markers (ABS), and the differences of all but the base-
markers and the base-markers were calculated to produce
the baseline corrected markers (CORR). In addition we
created the normalized markers (NORM), by dividing all
the frequency limited (filtered) markers by the otherwise
similar, but not filtered markers and the relative markers
(REL), where other markers were divided with the s1, s2
and s markers. Finally we created a set of time based width
markers (WIDTH) for each of the FHSs - S1, S2, and S
(for the ss set) - by defining the samples where the STD
dropped below 30, 40, 50, 60 or 70 % the maximum value
before and after each FHS, and by taking again the median
value over all the similar FHSs.

This resulted in a total of 3818 markers for the s1s2 set,
1811 markers for the ss set and 429 markers for the re-
mainder set.

2.5. Entropy-based decision tree classifier

We used binary tree classifier where each node uses one
PCG marker and limit value. The marker and limit value
combinations were selected by minimizing the split en-
tropy values [4], which were normalized by adding the
weight on abnormal recordings so that the sum weights
over the normal and abnormal sets were equal. The
classifier was trained initially for discriminating first set
training-f, and then set training-b from any other set
(trunk). At this phase all the data was used, and only the
marker set remainder was utilized. After that the training
was continued for separating the abnormal from normal
cases in three separate trees with full available marker sets:
one tree for s1s2, ss, and remainder sets each. The training
was continued until predefined stop criterion was reached:
either there were 16 times more weighted hits from one set
than from another, or the total number of weighted hits was
less than 1 % of the total weighted data size. The stop crite-
ria was defined by finding the best k-fold cross-validation

values in the training set. The search for the minimal split
entropy value for each node was done simply by testing all
the marker - value combinations.

The final classifiers had all two nodes for set separation
(trunk: nodes 0 and L in Table 2) and 14 nodes in s1s2
tree, 26 nodes in ss tree and 36 nodes in remainder tree for
classifying the abnormal from normal. 57 % of the leafs
were classified as normal, 41 % as abnormal, and 2 % as
unknown - a leaf was defined as unknown, if there were
less than 3 times more weighted hits in either of the sets
(normal or abnormal). See the most important nodes in
Table 2.

3. Results

After several iterations we achieved a score of 0.79 (Se
= 0.69 and Sp = 0.92) on a hidden test subset.

The separation capability of our FHS segment extractor
was found sufficient as seen in Table 3, where accuracy of
the event extractor is compared to the Challenge provided
hand corrected reference annotations. If we discard events
detected within the ranges that were defined as noise in
the reference, we achieved a total FHS detection accuracy
of 99.8 %, if s1s2 and ss sets were combined so that an
extracted event is aligned with either S1 or S2 reference.
By observing the consistency of segmentation within data
in the ss set, we achieved an inconsistency rate of 2.46 %
meaning that in that fraction of data the selected marker
did not separate S1 from S2 consistently but selected both
in an inconsistent fashion.

Table 1. Distribution of Challenge Phase II training set
data in heart sound decomposition sets by patient groups.

Event set Normals Abnormals Total
s1s2 1402 203 1605
ss 761 292 1053
remainder 325 170 495

Table 3. Event detection precision (Prec) compared to ref-
erence events. Prec is defined as TP / (S1+S2+FP), where
TP is S1 for s1, S2 for s2 and S1 or S2 for ss. Noise is
the number events detected inside reference noise annota-
tions. False positive (FP) reflects the detected events that
don’t match any reference event.

Event S1 S2 Noise FP Prec
s1 21793 413 417 14 0.981
s2 611 17369 657 76 0.962
ss 8976 516 517 19 0.998

 

 

  



Table 2. The most important nodes in the three classifier trees. WHAT, WHERE, TO and HOW are type descriptors for
node parameters. Freqlow and freqhigh are the filter bandpass frequencies. Limit is the binary limit of the left and right
separator. N and Abn are abbreviations for normal and abnormal patient groups. See the text for more accurate description.

WHAT WHERE TO HOW freqlow freqhigh limit N left Abn left N right Abn right
trunk
- NORM seq - max 300 500 0.154
L NORM seq - min 0 25 0.596
s1s2
LL NORM s2s1 - min 100 200 0.157 141 153 1179 16
LLL REL s2s1 s1 minmax 400 600 0.502 62 3 79 150
LLLR ABS s1s2 - min 750 850 0.586 63 53 16 97
LR NORM seg - min 25 50 0.275 48 0 15 31
R ABS s2s1 - all - - 133.5 19 0 0 3
ss
LL NORM ss - min 75 100 1.33 69 191 484 15
LLL REL ss s minmax 500 700 0.486 24 2 45 189
LR NORM seg - min 25 50 0.256 119 13 50 60
LRR WIDTH s - 50% 125 150 0.052 47 22 3 38
R ABS seq - min 125 150 0.172 29 1 10 12
remainder
LL NORM seg - min 87.5 112.5 0.145 31 68 27 1
LLL ABS seg - minmax 0 25 442 12 63 19 5
LR ABS seg - min 350 400 0.601 220 63 0 8
R NORM seg - min 12.5 37.5 0.218 21 0 26 30
RR NORM seg - min 225 250 0.020 25 15 1 15

4. Discussion

Our approach was based on methods we had imple-
mented for other signal domains, and we were pleased
to confirm that our event detection algorithm was accu-
rate also in PCG context. The main implementation effort
was porting the actual software code from our heteroge-
nous computing environment (OpenCL) to the PhysioNet
Challenge Entry setup. We think it is fair to state that many
of our operations in preliminary studies would have been
very frustrating to run without the capability to immerse
parallel computing.

We had only limited success in balancing the data sets,
and we were surprised by the notable differences between
the sets. Our markers seemed more capable in separat-
ing the data sets from each other, than in separating the
normal patient group from the abnormal one: Single node
separated the set training-f with 99.2 % accuracy and the
set training-b with the 96.3 % accuracy from the other sets
and we ended up using these nodes also as the first nodes
in the final classification tree. We tested also several bal-
ancing setups, where we weighted each data set based on
their number of patients per number of recordings ratio,
but those didn’t seem to improve our classifier accuracy.

To conclude, we feel that our weakest point was too
simple classifier approach. The binary tree used only one
marker at a time, and it would have required more ad-
vanced markers that were less influenced by measurement
setup. Reliable patient identification with PCG data from

multiple sources is likely to require other than only time-
frequency based approach, or at least substantial adjust-
ments to balance the measurement position and device-
specific differences.

References

[1] Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ,
Castells F, Roig JM, Silva I, Johnson AE, Syed Z, Schmidt
SE, Papadaniil CD, Hadjileontiadis L, Naseri H, Mouka-
dem A, Dieterlen A, Brandt C, Tang H, Samieinasab M,
Samieinasab MR, Sameni R, Mark RG, Clifford GD. An
open access database for the evaluation of heart sound algo-
rithms. Physiological Measurement 2016;37(9).

[2] Leatham A. Auscultation of the Heart and Phonocardiogra-
phy. Second edition. Churchill Livingstone, 1975.

[3] Blackman R. B. TJW. The measurement of power spectra.
Dover Publications, 1958.

[4] Pavlopoulos SA Stasis AC LE. A decision treebased method
for the differential diagnosis of aortic stenosis from mitral re-
gurgitation using heart sounds. Biomedical engineering on-
line 2004;1(3).

Address for correspondence:

Jarno Mäkelä
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