
Can Electrocardiogram Classification be Applied to Phonocardiogram Data? –
An Analysis Using Recurrent Neural Networks

Christopher Schölzel, Andreas Dominik

THM University of Applied Sciences, KITE Kompetenzzentrum für Informationstechnologie
Giessen, Germany

Abstract

Both a Phonocardiogram (PCG) and an Electrocardio-
gram (ECG) are sequential measurements of heart activ-
ity used to distinguish normal from abnormal heart func-
tion. Although they measure different physical quantities,
we show that training a long short-term memory network
on the Physionet challenge using only the ECG data avail-
able for the MIT heart sounds database still yields a score
of 0.74 compared to the reference score of 0.82 for a simi-
lar net trained on the PCG data.

This finding suggests that it may be valuable to train a
transformational neural network to produce an artificial
ECG from a PCG. Such a transformational net would al-
low to harness the know-how of decades of research on
ECG classification to improve PCG classification. Unfor-
tunately, this task seems too hard for current state-of-the
art architectures for neural networks given the data of the
Physionet challenge 2016. However, it may be worthwhile
to further pursue this approach using data with less vari-
ance in the ECG signals or a specialized network architec-
ture.

1. Introduction

A search for the term “electrocardiography” on
Pubmed [1] currently lists 190,867 entries, while a search
for the term “phonocardiography” returns only 7,758
items.

In essence, both an electrocardiogram (ECG) and a
phonocardiogram (PCG) are temporal sequences of a con-
tinuous measure that are used to diagnose heart diseases.
From a data science perspective, this makes them similar
enough to wonder whether we may somehow use the re-
sults of the orders of magnitude more numerous research
on ECGs to advance the current state of PCG classification.

We could easily achieve this if we were able to trans-
form a PCG signal into an artificial ECG. In machine
learning this task falls under the category of sequence-to-
sequence learning. There already exist neural networks in

this domain that are able to perform natural language trans-
lation [2] and speech recognition [3]. Both approaches
only have a discrete sequence of events (words or sylla-
bles) as target sequence, but in principle there is nothing
that stops us from producing a continuous sequence as out-
put. Autoencoder networks, for example, encode an input
sequence into a smaller fixed-size representation and de-
code the entire input sequence from this representation.

Still, the idea of transforming a PCG into an ECG ar-
guably is a more difficult problem than transforming a text
in one language to a text in another language. In the latter
case, both the input and the output have the same structure
(sequence of words), whereas in our scenario we would
have to transform sound data into an ECG reading. Both
are essential waveforms, but they differ considerably in
terms of the shape of the waves and their dominant fre-
quencies. Additionally, of course both signals do not carry
identical information. Not every polarization or depolar-
ization visible in the ECG results in a respective sound.
Conversely, the murmurs and additional heart sounds vis-
ible in a PCG do not have a specific representation in the
ECG.

The first question we have to ask is therefore: Can an
ECG representation carry the information that is required
for PCG interpretation? The 2016 Physionet challenge [4]
provides an excellent basis to answer this question. The
first part of the training set, the MIT heart sounds database
(MITHSDB), contains both ECG and PCG signals. As the
task was to distinguish between normal and abnormal PCG
recordings, we can train one classifier on the PCG data
as intended and another classifier on the ECG data to find
out how much useful information the actual ECG contains.
This should be a good estimate of the maximum amount of
information that can be gained from an artificial ECG.

2. Methods

2.1. Classification

For the classification of ECGs and PCGs, we use long
short-term memory networks (LSTMs). LSTMs are recur-

Computing in Cardiology 2016; VOL 43 ISSN: 2325-887X DOI:10.22489/CinC.2016.167-215

rent neural networks (RNNs) that are capable of detect-
ing long-term dependencies in the input data [5]. Since
we only wanted to have a competitive classifier to test our
hypothesis, we used a rather simple network architecture.
The single input neuron containing the ECG or PCG signal
is connected to a hidden layer of 100 LSTM units which
is again connected to an output layer with only one neuron
and a linear activation function. The LSTM layer used a
sigmoid activation for the inner cells and tanh activation
for the LSTM unit output. Our objective function was the
squared error of the activation of the output neuron after
the whole input sequence has been fed through the net-
work. In accordance with the definition of the Physionet
challenge, the output should be -1 for a normal sample and
1 for an abnormal sample. The implementation of the net-
work was done in Python using the Keras framework [6].
In the following, we will call the ECG classification net-
work LSTMe and the PCG classification network LSTMp.

As training data we used all available challenge
databases for LSTMp. Since the total count of normal sam-
ples was much higher than the count of abnormal samples,
we used all abnormal samples, but only a random selec-
tion of normal samples of the same size as the abnormal
samples (in total n = 1262). For LSTMe we could only use
the data of the MITHSDB, because the other databases did
not contain ECG signals. We performed the same random
sampling on MITHSDB to achieve an uniform class distri-
bution. We did not apply any denoising or normalization
for both nets, because the score achieved on this data was
already sufficiently high. The dataset was split randomly
into a training (n = 1136) and a test dataset (n = 126).

The training algorithm was the same for both nets. We
used RMSProp [7] with a learning rate of 0.001, ρ = 0.9
and ε = 10−8. The loss function used was mean squared
error.

2.2. Transformation

For the transformational neural network (TNN), we
could not use the network layout proposed for sequence-
to-sequence learning by Sutskever et al. [2] or Graves
et al. [3], because these networks are trained on discrete
symbols while we have a continuous numeric sequence at
both ends of the training. We therefore tried several dif-
ferent approaches, some similar to these proposed struc-
tures. Unless otherwise stated the training algorithm used
is Adam [8] with learning rate 0.001, β1 = 0.9, β2 =
0.999, ε = 10−8 and mean squared error as objective func-
tion. For LSTM layers the default choice for the activation
function was tanh activation for the whole LSTM unit and
sigmoid activation for the inner cells. The approaches are
the following:
1. A simple LSTM with 100 hidden neurons, linear acti-
vation function and an (also linear) output layer.

2. A bidirectional LSTM (BLSTM) consisting of two 100
unit LSTM layers, where one layer receives the normal in-
put and one layer the reversed sequence. The output of
both layers is concatenated and then connected to an out-
put layer with a single neuron with linear activation.
3. Same structure as 2, but with four layers of 50 LSTM
units in both paths instead of the single LSTM layer. The
training algorithm for this net was RMSProp with the same
Parameters as for LSTMe and LSTMp.
4. Evolino network [9] with a single 100 unit LSTM layer
with linear activation, which is trained by an evolutionary
algorithm, and an linear output layer, whose weights are
determined by least squares optimization. For the evolu-
tionary algorithm we used a mutation rate (factor applied
to Cauchy noise) of 0.01.
5. Autoencoder network with three fully interconnected
feed-forward layers with linear activation. The first and
last layers have 6000 neurons. The network is presented
with a window of the PCG or ECG of length 6000 and
is then asked to reproduce the input exactly on the output
layer. When the middle layer is chosen smaller (we exper-
imented with sizes varying from 100 to 3000), the network
has to produce a compressed version of the input signal,
discarding smaller variations. If one has an PCG autoen-
coder and a ECG autoencoder, it is possible to train a TNN
that transforms the output of the encoding part of the ECG
network into the input for the decoding part of the PCG
autoencoder. Due to the compression, this may be an eas-
ier task than directly transforming the sequences. Here, we
used stochastic gradient descent as training algorithm with
a learning rate of 0.01.
6. Temporal autoencoder network using a five layer LSTM
of sizes 25×15×5×25×25 and an output layer with linear
activation. The network uses 50% overlapping windows of
size 200 from the original sequences as input data.
7. BLSTM as in 2, which does not directly translate PCG
signals to ECG signals but instead uses the wavelet coeffi-
cients of both signals. The coefficients were obtained by a
discrete wavelet transform with the sym12 wavelet, which
is reported to give good results for ECG denoising [10].

The transformational networks also used a more rigor-
ous preprocessing. We removed baseline wander from the
ECG signal by a highpass filter using a smooth cutoff of
the fourier coefficients of the signal at 0.3 Hz. Addition-
ally, we applied wavelet denoising with the sym12 wavelet
and the NeighBlock [11] method to both the PCG and ECG
signals. For the ECGs the estimated standard deviation of
white noise was 0.08, for the PCGs it was 200. We no-
ticed that there are large qualitative differences in the shape
of the ECGs due to different placement of the electrodes.
We therefore only selected a small subset of 134 of the
MITHSDB samples for training the transformational net-
works, which were considered to have a “typical” shape of
QRS-complex, P and T wave. As with the classification

net dataset sensitivity specificity score
LSTMe test 0.727 0.750 0.739
LSTMe train 0.613 0.790 0.702

LSTMp test 0.778 0.857 0.817
LSTMp train 0.822 0.824 0.823
LSTMp official 0.682 0.815 0.749

Table 1. Results of ECG classification (LSTMe) and PCG
classification (LSTMp) using LSTMs. The Physionet chal-
lenge scores provided for the test and train dataset were
computed locally. Only the result marked as official was
obtained from an official entry to the challenge.

nets we split our dataset into a training (n = 121) and test
(n = 13) set. We also experimented with a strategy where
we split each sample into non-overlapping windows of five
seconds length, yielding larger sample numbers (853 total,
768 train, 85 test) and a slightly easier task for the net. In
both setups, all samples were additionally normalized to a
median of zero and a standard deviation of one.

3. Results

The results of the classification networks can be seen in
Table 1. The score of LSTMe was roughly 0.1 units lower
than for LSTMp. Generally all networks tend to have a
higher specificity than sensitivity, with the difference being
more pronounced for LSTMe.

Unfortunately, for the TNN, none of our approaches
produced anything that would resemble an artificial ECG.
The autoencoder-approaches both failed to reproduce the
original signal, whether they were trained with ECG or
PCG data. Most of the other approaches simply yielded
a seemingly random jitter around the mean value of the
target ECG. The only notable exception were approaches
2 and 3 involving BLSTMs. As can be seen in Figure 1,
these nets seemed to react to the primary heart sounds S1
and S2 by producing first a sharp drop and then a small in-
crease in the output resembling roughly the S and T waves.
There is, however, no indication that they are able to dis-
tinguish S1 and S2 or to anticipate the next heart cycle,
which would be required to also follow the R wave.

4. Discussion

The official score of 0.749 for LSTMp gives good evi-
dence that LSTMs are a suitable classifier choice for this
task, especially since we only used a very simple network
architecture without any data preparation. Comparing the
locally computed scores of LSTMp and LSTMe also sug-
gests that our transformational approach may be viable.
We loose around 0.1 in score, which roughly translates to a
10% loss in sensitivity and specificity, but we are still able

15.6 15.8 16.0 16.2 16.4 16.6 16.8
3
2
1
0
1
2
3

n
o
rm

a
liz

e
d
 p

re
ss

u
re

PCG

15.6 15.8 16.0 16.2 16.4 16.6 16.8
time[s]

2

1

0

1

2

3

n
o
rm

a
liz

e
d
 v

o
lt

a
g
e ECG

real ECG

TNN output

Figure 1. Output of TNN with architecture no. 3 trained
on non-overlapping five second windows for sample a0345
(part of the test set).

to classify 74% of the data of the MITHSDB using only
ECG information. This is especially interesting since the
Physionet challenge was designed to be solved with PCG
information.

When we investigated how LSTMe decides between
normal and abnormal cases, we found a surprising corre-
lation: Most of the time, the network just outputs the sign
of the input and indeed this “feature” is enough to achieve
a score of 0.63 on the MITHSDB. These results therefore
have to be taken with a grain of salt.

The fact that our TNN approach did not produce any
meaningful results shows that the transformation of a PCG
to an artificial ECG is an extremely hard task for a neural
network. This can be illustrated by a small thought exam-
ple, where we ask a physician to perform the same task.
Given only the PCG, the physician would probably draw
an idealized shape of QRS-complex, P and T wave at the
positions indicated by S1 and S2 in the PCG. Although
retaining the essential information about the heart rhythm,
the produced ECG may actually score very poorly when it
is compared with the actual ECG in terms of mean squared
error. The physician (and our TNN) would never be able to
predict the precise placement of the electrodes, which can
alter the signal substantially as illustrated in Figure 2.

Another problem that our TNNs had to face was the
variance and noise in the PCG data. Unfortunately, the
MITHSDB was recorded using 11 different transducer
sites across samples, which introduces significant variation
in the shape and quality of the input data. In principle, neu-
ral networks are able to learn to ignore these variations and
concentrate on the relevant information in the input signal.
However, since our target signal also had very strong vari-
ations, the error that was fed back into the network during

0.0 0.2 0.4 0.6 0.8 1.0

4000

2000

0

2000

4000

p
re

ss
u
re

PCGs

0.0 0.2 0.4 0.6 0.8 1.0
time[s]

1.0
0.5
0.0
0.5
1.0
1.5
2.0

v
o
lt

a
g
e
[m

V
]

ECGs

a0081

a0323

a0285

Figure 2. Variations among the hand-selected normal sam-
ples with “typical” ECG shape manually aligned at the R
peak. It can be seen that from the PCG it is not predictable
how large the Q, R, S and T waves are in the ECG.

training may simply have been too irregular to guide the
network to filter out these input variances.

It may still be the case, that we did not find the right set-
tings for training parameters or a fitting network structure.
However, the results of our best TNN shown in Figure 1
suggest that a BLSTM can at least learn the simple and
strong correlations between S1 and the S wave and S2 and
the T wave. With more regular data, that exhibits clearer
correlations between other parts of the signals, our trans-
formational approach may therefore still be viable.

5. Conclusion

What can be learned from our approach? First of all,
ECG data may be more interesting for diseases that are
typically detected using a PCG than one would expect at
first glance. It may be interesting to use more sophisticated
classifiers and other datasets to validate or falsify our find-
ings with respect to specific diseases. At the same time,
one should investigate the classifier looking specifically
into the features that it learns and whether they are only
rhythm-related or really reflecting more subtle changes in
the heart function.

A transformation from PCG to an artificial ECG seems
infeasible with the given data. To have a realistic chance at
this task, we have to use ECG data that either have a very
exact electrode placement or that is presented in a form that
is invariant to electrode placement, such as 3D vectors ob-
tained by 12-lead ECGs. In the same line, one should also
work with PCG data that only features a single transducer
placement setup.

Even if we have a net that can do the transformation, we

still have to find ECG-related methods that can be of use in
this area. One interesting proof of concept may be to just
create a very simple artificial ECG using a template shape
that is only translated in time according to the location of
the primary heart sounds S1 and S2. With this approach,
we only retain rhythmic information, but we do not need
a complicated TNN. Such an artificial ECG may already
be enough to apply some rhythm-related analysis of PCG
data using methods developed for ECG without the need
to adapt the method itself.

References

[1] NCBI. Pubmed, 2016. URL http://www.ncbi.nlm.
nih.gov/pubmed. (visited 24.08.2016).

[2] Sutskever I, Vinyals O, Le QV. Sequence to sequence learn-
ing with neural networks. In Advances in neural informa-
tion processing systems 27. Montréal, Canada, 2014; 3104–
3112.

[3] Graves A, Fernández S, Gomez F, Schmidhuber J. Connec-
tionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning.
Pittsburgh, Pennsylvania, 2006; 369–376.

[4] Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro
FJ, Castells F, Roig JM, Silva I, Johnson AEW, Syed Z,
Schmidt SE, Papadaniil CD, Hadjileontiadis L, Naseri H,
Moukadem A, Dieterlen A, Brandt C, Tang H, Samieinasab
M, Samieinasab MR, Sameni R, Mark RG, Clifford GD.
An open access database for the evaluation of heart sound
algorithms. Physiological Measurement 2016;37(9).

[5] Hochreiter S, Schmidhuber J. Long short-term memory.
Neural Computation 1997;9(8):1735–1780.

[6] Chollet F. Keras, 2015. URL https://github.com/
fchollet/keras. (visited 31.08.2016).

[7] Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude, 2012.

[8] Kingma D, Ba J. Adam: A method for stochastic optimiza-
tion. ArXiv e-prints arXiv:1412.6980 [cs.LG], 2014.

[9] Schmidhuber J, Wierstra D, Gagliolo M, Gomez F. Training
recurrent networks by evolino. Neural Computation 2007;
19(3):757–779.

[10] AlMahamdy M, Riley HB. Performance study of different
denoising methods for ECG signals. Procedia Computer
Science 2014;37:325–332.

[11] Cai TT, Silverman BW. Incorporating Information
on Neighbouring Coefficients into Wavelet Estimation.
Sankhyā: The Indian Journal of Statistics, Series B (1960–
2002) 2001;63(2):127–148.

Address for correspondence:

Christopher Schölzel
Technische Hochschule Mittelhessen
Wiesenstraße 14, 35390 Gießen, Germany
christopher.schoelzel@mni.thm.de

	167-215

