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Abstract

The ability to accurately stratify patients at risk of ad-
verse cardiovascular outcomes using heart sound record-
ings could result in earlier treatment and improved patient
outcomes. However, there remain several challenges as-
sociated with risk stratifying patients based on the phono-
cardiogram (PCG) alone. First, inter-patient differences
can make it challenging to learn a model that generalizes
well across patients. Second, heterogeneity introduced by
the collection environment of the recordings can render
a classifier trained on one population useless when ap-
plied to another. To address these challenges we explore
the use of temporal alignment techniques, in particular dy-
namic time warping (DTW). Using DTW we compare heart
sounds within and across subjects/recordings. These DTW
based features, coupled with widely used spectral MFCC
coefficients, serve as input to a linear SVM. Applied to
the held-out test set our classifier obtained a test score of
82.4%, suggesting that temporal alignment techniques can
effectively reduce the effects of inter-patient variability and
mitigate the differences introduced by heterogeneous data
collection environments.

1. Introduction

In cardiac auscultation an examiner uses a stethoscope
to listen for unique and distinct sounds, that provide im-
portant data regarding the condition of the heart. Mod-
ern recording equipment captures these heart sounds as
a phonocardiogram (PCG). In principle, these recordings
could be used to automatically monitor patients and diag-
nose cardiac abnormalities. Yet, while auscultation is a
common practice in patient exams, PCGs are not widely
used clinically, where echocardiograms and electrocardio-
grams are more prevalent. This is due, in part, to the lack
of robust algorithms for automatically classifying PCGs.
To address this issue, the 2016 PhysioNet/CinC Chal-
lenge focused on the development of algorithms to classify
PCGs collected from both clinical and nonclinical environ-
ments [1].

Robust PCG classification algorithms must accurately
identify cardiac abnormalities across patients and across
diverse recording environments. To address challenges

associated with inter-patient variability we borrow tech-
niques that have been successfully applied in speech pro-
cessing and ECG analysis, where similar issues arise
[2–4]. In particular, we explore the use of dynamic time
warping (DTW) in measuring similarity between heart-
beats from the same subject and across subjects. Our ex-
periments show that such DTW-based features can miti-
gate the differences introduced by heterogeneous data col-
lection environments and improve classification perfor-
mance, especially when training and test populations dif-
fer.

2. Methods

In this section we present our supervised learning sys-
tem for classifying PCGs as either normal of abnormal. We
begin by describing the signal segmentation, then move on
to feature extraction and lastly explain the learning algo-
rithm.

2.1. Segmentation
As a first step, we segment the PCG recording into the

fundamental heart sounds: S1 and S2 in addition to the
systolic and diastolic intervals. These four intervals make
up the heart cycle states. Segmentation is an essential step
in the automatic analysis of PCGs, allowing one to uncover
the underlying physiological structure of the signal and
recognize abnormalities within physiologically meaning-
ful regions. Here, we use the state-of-the-art segmentation
algorithm introduced by Springer et al. [5].

2.2. Feature Engineering
Next, we apply several transformations to the segmented

heart cycle states of each record, obtaining features per-
taining to time intervals, spectral analysis and morphology.

2.2.1. Time Interval Features
From the segmented recordings, we first extract features

pertaining to heart sound intervals. We compute statistics
for the length of each heart cycle state, as in [1]. These
were the baseline features provided in the Challenge, but
such timing data can contain important information regard-
ing cardiac arrhythmias.
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Figure 1: Comparison of DTW preprocessing techniques in sample intervals from different training populations.
Top: Untouched recording, Middle: High Pass Filter (HPF), Bottom: Homomorphic envelogram

2.2.2. Spectral Analysis: MFCC Features
To analyze the spectral content of the signals we com-

pute the discrete wavelet transform (DWT) for each RR in-
terval. From this, we extract the mean and standard devia-
tion of each approximation and detail coefficient. This cap-
tures the frequency content of the signal, which is known
to be useful in PCG classification [6]. Here, we chose a
wavelet transform over a discrete Fourier transform, since
PCGs are highly non-stationary.

In addition, we compute Mel-Frequency Cepstral Coef-
ficients (MFCCs) for each of the heart cycle states. We
calculate mean and standard deviation of these coefficients
for each record to capture variability within each filter-
bank interval. Our choice of MFCCs was inspired by their
frequent use in the speech recognition domain. MFCCs
offer several benefits over wavelets such as decorrelated
coefficients, which often perform better in linear mod-
els. Moreover, researchers have had success using MFCCs
with HMMs for automatic auscultation classification [7].

2.2.3. Morphology Analysis: DTW Features
The features described above capture frequency content

and timing of a signal, but may fail to capture variability
in morphology that may be symptomatic of cardiac ab-
normalities. To capture this variability we consider the
temporal representation of the PCG. Since classic pair-
wise measures such as Euclidean distance are susceptible
to temporal distortions [8], we use dynamic time warp-
ing (DTW). DTW finds an optimal alignment between two
time-dependent sequences [4] by warping the sequences in
a nonlinear fashion. This allows similar time series that are
locally out of phase to be optimally aligned and compared
in a meaningful way. DTW has been widely used for tasks
such as speech recognition and ECG analysis, resulting in

good empirical performance [3, 9, 10]. Here, we use DTW
to compare the morphology of heart sounds within a sub-
ject and across subjects.

Preprocessing: Before computing DTW distances, we
preprocess the PCGs to reduce noise and the effect of char-
acteristics specific to the recording environment. Empiri-
cal analysis revealed that applying a high-pass Butterworth
(fc = 25Hz, N = 3) filter effectively reduced noise with-
out affecting the core morphology of clean signals. To
further reduce noise we perform an envelope computation
over the PCG [5,11]. We perform a final z-standardization
to make the signals equally distributed, with zero mean and
unit variance. When computing DTW distances, we exper-
imentally selected a 10% Sakoe-Chiba constraint, and for
the DTW normalization strategy we resampled the records
to a common median length [9].

Intra-DTW: Several cardiac conditions are manifested
by higher than usual variability in the shape and frequency
of the heartbeats in the ECG. To capture this intra-patient
variability using PCGs, we compute intra-PCG heartbeat
DTW distances. First, we construct a representative (i.e.,
medoid) heartbeat for a given record. This is the heartbeat
whose average DTW distance to all the other in-record
heartbeats is minimal. Then we compute pairwise dis-
tances between this medoid beat and all other beats in the
record. We transform these distances into a set of five fea-
tures by taking the mean, standard deviation, and first, sec-
ond and third quartiles.

However, this does not capture the evolution of the sig-
nal across consecutive heartbeats. Therefore, we also ex-
tract the same features described above for consecutive
DTW distances.

Inter-DTW: Intra-DTW features will fail to capture ab-
normalities that manifest consistently. To cope with this

 

 

  



limitation we also compute inter-patient DTW distances.
These features aim to capture canonical patterns based on
a beat’s similarity to a set of template heartbeats. We con-
struct templates by first clustering the medoid beats for
each population and class label (normal and abnormal) and
then extracting the centroid of each cluster. For this, we
use spectral clustering with DTW for the affinity measure.
For each record and template, we compute DTW distances
to all the in-record heartbeats. Mean and standard devia-
tion of these distances are used as features.

2.3. Classifier
Given the features described in the previous section, we

learn a linear classifier to separate normal from abnormal
recordings. We use SVMs since others have shown them to
be effective when applied to this kind of task [12]. Before
learning the classifier, we apply zero-one min-max scal-
ing to the features in order to reduce bias towards any one
dimension. In addition, we employ asymmetric cost pa-
rameters to handle the class imbalance present in the Chal-
lenge data [13]. While we explored several different ker-
nels, here we focus on results pertaining to a linear model.
We optimized the cost parameters using crossvalidation on
the training data. The precise training/testing setup is de-
scribed in more detail below.

3. Experiments & Results
To measure the effectiveness of the proposed DTW-

based features in classifying PCGs, we ran a number of
experiments using the Challenge data [1], which consists
of PCG recordings from 6 populations (a through f ). In
this section we present our results and discuss how we ad-
dressed one of the main technical challenges: the extent to
which the data varied across populations.

3.1. Robustness of DTW Features
To assess how robust the proposed DTW-based fea-

tures are to inter-population differences, we computed his-
tograms for the DTW features from each population and
constructed kernel density estimates. Figure 2 compares
these estimates for an intra-DTW based feature (lower
plot) to those for an MFCC-based feature (upper plot).
While both plots exhibit variability across populations, the
lower plot illustrates how DTW-based features can reduce
inter-population variability. The trend shown in Figure 2
was consistent across the other DTW and MFCC features.

3.2. Test Setup + Classification Results
Next, we compared how different feature set combina-

tions performed when applied to the given classification
task. We evaluated performance of each classifier using
the challenge score described in [1]. The Challenge con-
sisted of both given labeled data and hidden test data. Due
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Figure 2: Comparison of Population Kernel Density Es-
timates for an average MFCC coefficient and the average
intra-DTW distance.

to the limited number of test submissions, we conducted
several experiments on the given data alone. For this, we
considered separate experimental setups that differ in the
way data are split into training and validation sets. Below
we summarize the four main setups we considered. It’s
important to note that in selecting model hyperparameters,
we used analogous splits during crossvalidation.
Balanced – Include 70% of each population in the train-

ing set; validate on the remaining 30%.
Balanced except a, f – Include 70% of each population,

except a and f , in the training set; validate on the remain-
ing 30% of b-e, 40% of a and 10% of f .
Balanced except f – Train on all of a, and 70% of b-e;

validate on 100% of f .
LOPO(p) – Train on all populations except population p,

validate on p. For performance evaluation, we define two
aggregate metrics: L, the average LOPO score and wL
weighted average LOPO score.

L = 1/N
∑
p

LOPO(p) wL =
∑
p

1/|p| · LOPO(p)

Results for each validation scheme and the challenge
hidden test set are presented in Table 1. The first row
corresponds to a classifier trained on the baseline inter-
val features combined with commonly used wavelet fea-
tures [1, 5, 6]. Comparing the performance of this row
to the second row, it is clear that MFCC features are bet-
ter at capturing important differences. In experiments not
shown here we found the gain in performance from the in-
terval features to be limited, thus we omit these features

 

 

  



Table 1: Results using various input features in different validation sets and the Challenge test set. Balanced splits are
averaged across 20 iterations and include standard deviations. Min and max LOPO metrics are included for L and wL.

Features Balanced Bal. except a, f Bal. except f L wL [Lmin, Lmax] Challenge
Interval, Wavelet 74.22 ± 0.63 73.19 ± 0.86 76.41 ± 0.49 58.27 52.35 [48.20, 76.50] 78.1
Interval, MFCC 77.68 ± 0.48 74.77 ± 0.72 79.66 ± 0.41 60.90 54.91 [51.70, 73.80]
MFCC, DTWinter 85.73 ± 0.48 78.05 ± 1.04 79.72 ± 0.42 66.03 64.64 [58.50, 75.70] 79.5
MFCC∗

, DTWintra 85.18 ± 0.74 78.97 ± 0.95 84.89 ± 0.43 68.37 68.81 [61.10, 77.40] 82.4
MFCC, DTWintra, DTWinter 85.63 ± 0.42 79.98 ± 0.87 84.42 ± 0.49 66.95 67.78 [60.60, 75.30] 78.9
∗ This set of features includes also Systole and Diastole in addition to S1 and S2

from the remainder of our experiments. The last three
rows of Table 1 describe different combinations of MFCC
features (applied to S1 and S2 intervals) and inter-DTW,
intra-DTW. While inter-DTW based features perform bet-
ter in a balanced setting (where populations appear in both
training and test sets), intra-DTW based features are more
robust to inter-population differences and obtain higher
scores in LOPO based metrics. Moreover, the best per-
formance in the hidden challenge test set is achieved when
combining MFCC features with the intra-DTW features.
We hypothesize that using intra-DTW features leads to bet-
ter generalization since they capture the variability within
a record while eliminating differences caused by heteroge-
neous recording environments.

4. Conclusion

In this paper we proposed two novel approaches to
using time alignment techniques in PCG classification.
When combined with spectral MFCC features, both ap-
proaches consistently improved the performance of the
classifier, even in the presence of significant population
differences between training and validation sets. In par-
ticular, we found that intra-patient DTW measurements
produced quasi-homogeneously distributed features across
populations and successfully captured intra-PCG variabil-
ity. While we considered only a simple linear classifier,
we suspect that the proposed features could prove useful
in more complex approaches to time series classification,
e.g. HMM, RNN and LSTM.
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