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Abstract 

Heart sounds reflect information of the mechanical 
contraction of the heart in both of the physiological and 
pathological conditions. It is important to develop novel 
numerical algorithms to characterize the features of the 
heart sound as a helpful diagnostic tool of cardiovascular 
diseases. This study aims to develop an efficient 
algorithm for analyzing heart sound signals that can be 
used for cardiovascular disease monitoring. In the 
algorithms, wavelet analysis (coif5) with 5 decomposition 
levels was first applied to heart sound signals for noise 
eliminating by using a soft fixed threshold. Then, heart 
sound signals were decomposed by the wavelet method to 
reconstruct bands with different frequencies. Following 
this, the normalized Shannon energy of each frequency 
band within the same time duration was calculated to 
determine the position of the second heart sound (S2). 
Finally, the aortic valve closure (A2) of the S2 were 
extracted using the power spectrum analysis of Auto 
Regressive(AR) model, which were used to classify the 
normal and abnormal heart sound recordings. Results 
show that the modified Sensitivity (Se), Specificity (Sp) 
and overall score are respectively 0.87, 0.61, and 0.74.  

1. Introduction

In a cardiac cycle, the electrical activity is firstly 
generated by the cardiac pacemaker, which then triggers 
atrial and ventricular contractions. This in turn pumps 
blood flowing between the chambers of the heart and 
around the body. The opening and closing behaviours of 
the heart valves are associated with acceleration and 
deceleration of blood, giving rise to vibrations of the 
entire cardiac structure and thus producing the heart 
sounds and murmurs [1]. These vibrations are audible at 
the chest wall, and the heart sounds can reflect the health 
condition of the heart. The phonocardiogram (PCG) is the 
graphical representation of a heart sound recording. 

Fundamental heart sounds (FHSs) usually consist of 
two components: the first (S1) and second (S2) heart 
sounds. Although the FHSs are the most recognizable 

sounds in the heart cycle, the mechanical activity of the 
heart may also cause other audible sounds, such as the 
third heart sound (S3), the fourth heart sound (S4), 
systolic ejection click (EC), mid-systolic click (MC), 
diastolic sound or opening snap (OS), as well as heart 
murmurs caused by the turbulent, high-velocity flow of 
blood. 

The segmentation of the FHSs is the first step in the 
automatic analysis of heart sounds. Previously several 
segmentation methods have been developed in the 
literatures [2-5]. 

The automated classification of pathology based on 
heart sound recordings has been performed for over 50 
years. However, massive challenges still remain now. 
Gerbarg et al. were the first group to attempt the 
automatic classification of pathology in PCGs using a 
threshold-based method [6], motivated by the need to 
identify children with rheumatic heart disease (RHD). 
Artificial neural networks (ANNs) have been the most 
widely used machine learning-based approach for heart 
sound classification. Typical relevant studies used 
different signal features as the input to the ANN 
classifier, including wavelet features [7], time, frequency 
and complexity-based features [8], and time-frequency 
features [9]. A number of researchers have also applied 
support vector machines (SVM) for heart sound 
classification in recent years. The studies can also be 
divided into different groups according to the feature 
extraction methods, including wavelet [10], time, 
frequency and time-frequency feature-based classifiers 
[11]. Hidden Markov models (HMM) have also been 
employed for pathology classification in PCG recordings 
[5]. Clustering-based classifiers, typically the k-nearest 
neighbours (KNN) algorithm [12], have also been 
employed to classify pathology in PGCs. In addition, 
many other techniques have been applied, including 
threshold-based methods, decision trees [13] and 
discriminant function analysis [14]. 

In our study, we classified the heart sound signals 
based on AR model with wavelet denoising and 
normalized Shannon energy. Results showed that the 
modified Sensitivity (Se), Specificity (Sp) and overall 
score are respectively 0.87, 0.61, and 0.74. 
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2. Method

Figure 1 outlines the flow of our approach. The 
architecture of our proposed algorithm included signal 
filtering， extraction of S2 using wavelet decomposition 
and normalized Shannon energy, extraction of S2 features 
using AR model, and classification of heart sound signals. 
Each major step was explained in more detail in the four 
upcoming subsections. 

Filtering
（wavelet）

The extraction of S2
（wavelet 

decoposition）
The classification of 
heart sound signals

The extaction of S2 
features

The extraction of S2
（normalized shannon 

energy）

Figure 1. Flow chart of our approach. 
2.1. Filtering 

For signal denoising, each original heart sound signal 
was decomposed by muti-level discrete wavelet, which 
means an input PCG signal was divided into low (ai) and 
high frequency (di) components and then the low 
frequency component was input into the next layer for 
further decomposition. In this study, wavelet analysis 
(coif5) with 5 decomposition levels was first applied to 
heart sound signals for noise eliminating by using a soft 
fixed threshold. Then, heart sound signals were 
decomposed by the wavelet method to reconstruct bands 
with different frequencies. Figure 2 shows the result of 
denoised heart sound signal.   

Figure 2. Denoised heart sound signal compared to 
original signal 

2.2. The extraction of S2 

2.2.1. Decompose the denoised PCG signal 
using wavelet decomposition and reconstruct 

the details and approximations 

In order to identify S2s correctly, frequency band of 
the majority power of S2 was used. Previous studies 
using FFT to analyze the frequency contents of the 
second heart sounds have indicated that the frequency 
spectrum of S2 contained peaks in a low-frequency range 
(10 to 80Hz), a medium-frequency range (80 to 200Hz) 
and a high-frequency range (220 to 400Hz) [1].  

Before decomposition, the denoised PCG signal was 
down sampled by factor 5. Some murmurs have higher 
frequencies than the normal sounds (up to 600Hz) [15]. 
Since these frequencies are still below a half of the 
sampling frequency 2000Hz, useful events of the heart 
sounds were not missed. After down sampling, a fifth-
level discrete wavelet decomposition of the denoised 
signal was done to obtain the coefficients of all the 
components of the decomposition. Using these 
coefficients, the details and approximations in desired 
level were obtained by reconstruction. The details and 
approximations varied depending on the wavelet families 
and orders used in the decomposition and reconstruction. 
According to the characteristics of the frequency 
spectrum of S2 and the possible noises, details d4, d5, and 
approximation a4 were selected as the sources for 
segmentation. 

2.2.2. Calculate the normalized average 
Shannon energy for selected approximations 
and details 

For each selected signal, d4, d5 and a4 were segmented 
using a segmentation algorithm based on the envelope 
calculated from the normalized average Shannon energy. 
The average Shannon energy attenuates the effects of low 
value noise and makes the low intensity sounds easier to 
be found. The average Shannon energy was calculated in 
0.02-second continuous segments throughout the 
normalized signal with 0.01-second overlap using the 
following formula: 
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where the xnorm  is the signal sample normalized to the 
maximum absolute value of the studied band signal, and 
N is the number of samples in 0.02-second segment, here 
N=40. 

Lastly the normalized average Shannon energy versus 
the whole time axis was computed as follow, 
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Where ( )( )M E ts  is the mean value of ( )E ts , ( )( )S E ts  is the
standard deviation of ( )E ts . 

Figure 3 shows the normalized average Shannon 
energy for selected approximations and details. 

Figure 3. The normalized average Shannon energy for 
selected approximations and details 

2.2.3. Mark the peak location of S1s and S2s 

The actual heart sound recordings are very complicated 
and patterns of heart sounds vary significantly from 
recording to recording. It is difficult to pick up all the S1s 
and S2s using a simple threshold. There might be 
undesired peaks due to the second part of splitted S2 or 
other events. In addition, the first heart sounds usually 
may be too weak compared with other peaks. Moreover, 
artifacts similar to the real peaks both in duration and 
amplitude might be selected as S1s or S2s. In order to 
solve these problems, the threshold setting and detection 
rules of picking S1s and S2s were modified. Firstly, 
simple threshold was used to mark all the peak locations 
of continuous segments exceeding the threshold limit. 
Then time intervals between two adjacent marks were 
calculated. According to the mean value and standard 
variation of the intervals, both lower and higher time 
interval limits were calculated, which were used to 
remove extra peaks and find lost weaker peaks. 

2.2.4. Decide the durations of S2s 

S1s and S2s should be distinguished from each other 
after they are marked. Here, the identification based on 
the following two facts: the longest time interval between 
two adjacent peaks in the recording (within 20 seconds) is 
the diastolic period and the duration of the systolic period 
is relatively constant compared to the diastolic one. After 
the longest time interval was found, the starting and the 

ending marks of that interval were set as S2 and S1 
respectively. Then the intervals were checked forward 
and backward from the longest interval on. Those marks 
which destroyed constancy limitations of systolic and 
diastolic period were discarded and the rest Sls and S2s 
were identified. The artifacts were discarded in this 
deciding procedure.    

The detected positions of intensity peaks of S1s and 
S2s indicated the approximate locations of these sounds. 
The actual boundaries of these sounds were obtained by 
defining another lower intensity threshold value, which 
differed from the one for detecting S1 and S2. The 
boundaries of S1s and S2s were modified by confining 
their duration within 20ms to 150ms respectively. Finally, 
the systolic and diastolic periods were decided as the 
small transition time intervals before and after S1 and S2. 
Figure 4 shows the durations of S2s. 

Figure 4. The durations of S2s 

Figure 5. The PSD of S2 

2.3. The extraction of S2 features 

Because the recording location and physical condition 
of patients have great influences on the amplitude of heart 
sound signals, it is difficult to compare the energy 
differences between heart sound signals. However, the 
frequency characteristics of the heart sound signal is 
relatively stable, which can be chosen as the parameters 
of S2 features in according to the physical characteristics. 
For S2, it occurs at the beginning of diastole with the 
closure of the aortic and pulmonic valves, so we select the 
aortic valve closure (A2) as a feature of S2. The primary 
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peak was found using AR model to estimate the power 
spectral density (PSD) of heart sound signals. Figure 5 
shows the PSD of S2. 

2.4. The classification of heart sound 
signals 

In this challenge, we focused on the classification of 
heart sound signals. In order to diagnose the heart 
diseases, we used A2 to classify the normal and abnormal 
heart sound signals, the parameters threshold setting is 
selected by experiment experience. 

3. Results

Based on the method described above, the 
classification in test set of PhysioNet database were 
estimated.  

In this study, the modified Sensitivity (Se), Specificity 
(Sp) and overall score are respectively 0.87, 0.61, and 
0.74 in the Event-1. Although the accuracy of 
classification is not high, the running time is fast which 
can satisfy the real-time classification. The average 
running time for training set is 5.33% and the maximum 
running time is 5.65%. Meanwhile, the average running 
time for test set is 5.33% and the maximum running time 
is 5.59%. 

4. Discussion

We applied wavelet analysis to heart sound signals for 
noise eliminating. Through the comparison and analysis, 
wavelet analysis (coif5) with 5 decomposition levels was 
first applied to heart sound signals for noise eliminations 
by using a soft fixed threshold. 

It is notable that thresholds for classifying heart sound 
signals were tightly correlated with more tests on 
different types of data. In future studies, this method can 
be further improved by introducing new algorithms for 
the extraction of S2 features. 

It should also be noted that in our approach only the 
main A2 frequency have been extracted, which is better 
than extracting more features in terms of expediting 
calculation speed. In the further work, new approaches 
like Hilbert transform should be added to improve our 
method for heart sound signals analysis.  
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