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Abstract

A fully-connected, two-hidden-layer neural network
trained by error backpropagation, and regularized with
DropConnect is used to classify heart sounds as normal
or abnormal. The heart sounds are segmented using an
open-source algorithm based on a hidden semi-Markov
model. Features are extracted from the heart sounds using
a wavelet transform, mel-frequency cepstral coefficients,
inter-beat properties, and signal complexity. Features are
normalized by subtracting by their means and dividing by
their standard deviations across the whole training set.
Any feature which is not significantly different between
normal and abnormal recordings in the training data is
removed, as are highly-correlated features. The dimen-
sionality of the features vector is reduced by projecting it
onto its first 70 principal components.

A 10 fold cross-validation study gives a mean classifi-
cation score of 84.1% with a variance of 2.9%. The final
score on the test data was 85.2%.

1. Introduction

An open-access database of heart sounds has been pro-
vided by Liu et al. [1]. Using this, an algorithm has been
produced that classifies these heart sounds as normal or
abnormal.

2. Data stratification

The make-up of the initial training data is given by Liu
et al. [1]. The data removed from this to be used for vali-
dation is given in table 1. The remaining data is to be used
for training. This data is balanced so that there are roughly
equal numbers of normal and abnormal recordings in the
training set. This is done by removing or repeating some
recordings (with never more than 1 repeat of each record-
ing). This final training data is given in table 2.
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Set | NG NP AG AP

a 40 0 37 3
b 44 5 36 13
c 3 0 3 0
d 5 0 4 1
e 49 0 38 15
f 8 0 8 0

Total | 149 5 126 32
Table 1. Composition of validation data - N = normal, A
= abnormal, G = good quality recording, P = poor quality
recording

Set | NG NP AG AP Notes

a 152 2 239 13 Normals repeated
b 60 25 37 18 1/4 normals kept
c 8 0 16 3 Normals repeated
d 21 1 22 1 Nothing done

e 175 9 108 22 1/10 normals kept
f 70 2 46 6  Abnormals repeated

Total | 486 39 468 63

Table 2. Composition of final training data - N = normal,
A = abnormal, G = good quality recording, P = poor qual-
ity recording

3. Segmentation

The heart sounds were segmented using Springer et al.’s
open-source algorithm based on a hidden semi-Markov
model [2].

4. Feature Extraction

Once the heart sounds have been segmented, features are
extracted to best represent the heart sounds to the classifier.

4.1. Wavelet Transform

The wavelet transform is used to get a typical time-
frequency representation of the sounds from a single heart
cycle. The Morlet wavelet is used as the mother wavelet.
The continuous wavelet transform (CWT) is evaluated at
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11 frequencies, then each frequency level is individually
normalized by subtracting by its mean and dividing by its
standard deviation (across all time). Following this the
CWT is averaged into 20 time bins per heart beat, 3 in
S1, 7 in systole, 3 in S2, and 7 in diastole. This CWT is
then averaged over heart beats which are well correlated
with each other. This is done because, while recording
the sound signal, stethoscope movements can lead to vary-
ing amplitudes, resulting in some parts of the cardiac cy-
cle being artificially louder than others. The beats which
are well correlated are determined by finding the two beats
with the minimum euclidean distance between their CWT
coefficients at each frequency. Then any other beats within
50% of this minimum euclidean distance, from both of the
two beats, are also averaged over. This leads to a time-
frequency representation of a typical heart beat which has
20 discrete points in time and 11 discrete points in fre-
quency. A typical wavelet feature vector for a normal and
abnormal recording are shown in figures 1 and 2 respec-
tively. These figures show that, for the aortic stenosis pa-
tient (figure 2), between 150 and 250 Hz, the sound in the
systolic phase has a higher amplitude relative to the funda-
mental heart sounds.
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Figure 1. CWT feature for a normal heart sound (c0011)

4.2. Mel-frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) have been
widely used in speech recognition [3], and have also shown
to be useful in heart sound classification [4]. In order to
calculate the MFCCs, the signal is divided into the same
20 frames in time per heartbeat as for the CWT. Follow-
ing this, a periodogram is found of each segment, with
a 10% overlap either side. A Hamming window is used
to reduce spectral leakage. The periodogram gives values
for the signal power in 40 evenly spaced frequency bins
between 0 (not inclusive) and the Nyquist frequency (in-
clusive). As for the CWT, this periodogram is then aver-
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Figure 2. CWT feature for an abnormal heart sound
(c0028 - aortic stenosis)

aged over beats which are well correlated with each other,
at each frequency (see section 4.1 for full details). The
periodogram is then filtered using a filter bank, in which
frequencies are equally spaced in the mel-scale (equation
D).

Mel = 11251og (1 + i) (1)

700

The MFCCs are then obtained by taking the logarithm
of each of the filtered periodograms, and then taking a
discrete cosine transform (equation 2) of each of the 20
frames.

km
MFCC(t, k) nzllog (Ptiit(t,n)) cos (N (n 0.5))
(2)
MFCC (t,k) gives the k' cepstral feature of the ' time
frame. Py, (t,n) is the filtered power at time frame ¢ for
the nt" filter bank. NV is the number of filter banks used.
Finally, the last cepstral feature is removed to give the
final MFCC feature vector used for classification.

4.3. Inter-beat features

The features, which were supplied for the challenge,
were used. These are the mean and standard deviation of:
the length of one heart cycle; the length of S1; the length of
systole; the length of S2; the length of diastole; the ratio of
systolic length to whole heart cycle length; the ratio of di-
astolic length to whole heart cycle length; the ratio of sys-
tolic length to diastolic length; the ratio of mean systolic
amplitude to mean S1 amplitude; and the ratio of mean
diastolic amplitude to mean S2 amplitude.

These features help to characterize the difference in be-
haviour between different heart beats in the cycle, which is
missed by the first two features.



4.4. Complexity and Simplicity

Features which characterise the complexity of the signal
are also extracted. These have also been used by Schmidt
et al. [5]. Firstly a periodogram is found with 20 time
frames per heart cycle (3 in S1, 7 in systole, 3 in S2, 7 in
diastole) and 5 equally spaced frequency frames. This is
obtained in the same way as for the MFCCs (section 4.2)
and is then normalised between 0 and 1 by dividing by the
largest value. Following this the spectral entropy (SE) is
obtained as

SE(t) =Y Pua (t, f)log [Pas (£, f)] - 3)
f

Also the unbiased, standard deviation (SD), skewness (SK)
and kurtosis (KT) of the power spectrum at each frequency,
are obtained.

The spectral entropy, standard deviation, skewness, and
kurtosis make up 35 features which describe the complex-
ity of the signal.

5. Feature Normalization

Feature extraction results in a features vector of length
675. The make-up of the features vector is summarized by
table 3.

Feature ‘ CWT MFCC Inter-beat Complexity
Length \ 220 400 20 35

Table 3. Make-up of the features vector

Features are then normalized by subtracting their means
and dividing by their standard deviations (across the whole
training set).

6. Feature Selection

After normalization, all features are subjected to a Stu-
dent’s t-test to determine whether they are significantly dif-
ferent between normal and abnormal recordings. Any fea-
ture with a test statistic less than the student’s test statistic,
from a two-tailed test at the 5% significance level, is re-
moved.

Following this, for any pair of features which are highly
correlated (a covariance greater than 0.9), one of them is
removed (the one with the lowest ¢-statistic).

Finally, principal component analysis (PCA) is used to
reduce the dimensionality of the features vector. The best
performance (from the cross-validation study) was found
when the features vector was projected onto its first 70
principal components.

7. Classification

The classification algorithm is based on a fully-
connected, two-hidden-layer neural network, trained by er-
ror backpropagation [6]. The hyperbolic tangent activation
function is used for all the neurons in the network except
in the final layer, where the softmax activation function is
used. The log-likelihood cost function is used. The range
of hyper-parameters chosen for training the networks are
given in table 4. In order to militate against overfitting,

Parameter | Value
Number of epochs 75 & 150
Mini-batch size 8
Learning rate 0.05,0.1 &£ 0.2
L2-regularization parameter 0&0.5
Momentum coefficient 0.3

Table 4. Parameters used for training neural network

two types of regularization are used. The first is L2 reg-
ularization, where a w? term is added to the cost function
(where w is the weight along an individual neuron) to pe-
nalize large weights in the network. The second is Drop-
Connect, which is described by Wan et al. [7]. For all
the networks trained, the percentage of neurons which are
randomly removed from each layer varies between 10 and
30% for the neurons between the input and the hidden lay-
ers, and between 30 and 70% for the neurons between the
two hidden layers and between the second hidden and the
output layers

8. Results

In order to estimate the performance accurately, a 10-
fold cross-validation is performed. For this, the valida-
tion and training data are combined. Then for each cross-
validation a tenth of this data is randomly selected for val-
idation (preserving the ratio of recordings from each set),
with the remaining data used for training. Any recordings
that are repeated between training and validation are then
removed from the validation set, for each cross-validation.
The results of this 10-fold cross-validation are shown in ta-
ble 5. The parameters which produced the networks with
the highest 10-fold cross-validation accuracy are given in
table 6. Table 7 shows the mean score on each of the six
datasets across a 10-fold cross-validation.

9. Submission for test

When this algorithm was submitted to be evaluated on
the test data, a number of different networks were trained
with a range of hyper-parameters and different training
sets. For example, a 5-fold cross validation is done with



Fold | Se/% Sp/% Sc(V)/% Sc(T)/%
I 89.1  86.1 87.6 95.9
2 81.0  84.9 82.9 95.9
3 804 849 82.7 95.7
4 809 828 81.8 95.4
5 89.5 875 88.5 96.0
6 91.6 822 86.9 95.9
7 846 858 85.2 95.6
8 798  87.0 83.4 96.0
9 89.5  74.3 81.9 96.1
10 | 814 779 79.6 96.7
Mean | 84.8  83.3 84.1 95.9
SD | 46 42 2.9 0.3

Table 5. Results of 10-fold cross-validation test, where
each score is the average score of 8 networks trained with
the same hyper-parameters. Se = Sensitivity, Sp = Speci-
ficity, Sc = score, V = validation data, T = training data.

Parameter Value
Number of nodes in hidden layers 35,28
Number of nodes in output layer 2
Number of epochs 150
Mini-batch size 8
Learning rate 0.05
L2-regularization parameter 0
Momentum coefficient 0.3
Percentage of neurons dropped I-1 20
Percentage of neurons dropped between 1-2 50
Percentage of neurons dropped between 2-O 50

Table 6. Parameters which achieve the best 10-fold cross-
validation results, I-1 = between the input and first hidden
layers, 1-2 = between the first and second hidden layers,
2-0O = between the second hidden and output layers

Dataset | a b c d e f
Score /% ‘ 715 779 800 775 940 735

Table 7. Mean score on each dataset from a 10-fold cross
validation

networks trained on different hyper-parameters. The net-
works are then ensembled based on their score on the vali-
dation data and their diversity (measured by which record-
ings they incorrectly classified). Each of the networks in
the ensemble classifies the heart sounds, with the final clas-
sification is given by the majority.

The best result obtained by this ensemble of networks
on the test data was 85.2%.

10. Conclusion and Future Work

An algorithm capable of classifying heart sounds as
normal or abnormal with an accuracy of 84% has been

produced. A total of 675 features are extracted from a
recording using a wavelet transform, mel-frequency cep-
stral coefficients, inter-beat properties, and signal com-
plexity measures. These features are then normalized
across the entire training data. Features are removed if they
were shown to be statistically insignificant between nor-
mal and abnormal recordings. Highly correlated features,
with a covariance greater than 0.9, are also removed. The
dimensionality of the features vector is reduced by project-
ing it onto its first 70 principal components. Classification
is done using a fully-connected, two-hidden-layer neural
network, trained with error backpropagation and regular-
ized using DropConnect. Networks trained with different
hyper-parameters and trained on different data were then
ensembled to produce the highest classification accuracy
on the test data

Following this, an algorithm will be made which is capa-
ble of recognizing a good quality signal from a poor quality
one. We will also try and produce an algorithm capable of
diagnosing specific pathologies from the heart sounds.
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