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Abstract

Classification of heart sounds of a diverse set of phono-
cardiograms (PCGs) from different recording settings is
the challenging objective of the 2016 PhysioNet Chal-
lenge. We suggest an end-to-end deep neural network,
which is fed with raw PCGs and which learns to au-
tonomously extract features and to classify the record-
ings. Our architecture combines convolutional and recur-
rent layers, followed by an attention mechanism, which
weights time steps by importance and a dense multilayer
perceptron as classifier.

Whereas currently trending deep neural networks in
speech recognition or computer vision use up to a mil-
lion of training samples, a restricted set of only 3,153
heart sound recordings is available as training data. We
workaround this limitation by artificially increasing the
training set by means of augmentation of the raw PCGs
using various audio effects.

Using this moderately sized neural network, we attain
high validation scores of 0.89 on validation data; however
the resulting scores on the hidden test data of the challenge
diverge in range (0.82).

1. Introduction

The objective of the 2016 Physionet Challenge is the
classification of heart sound recordings as normal or ab-
normal. As heart sounds are a reliable indicator for the
health of the heart,
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automated algorithms for heart sound analysis are
widely studied.

Artificial neural networks have been shown to be pow-
erful classifiers when applied on the wavelet transform of
heart sounds. [1]

Inspired by the recent success of deep learning, we train
neural networks in an end-to-end fashion, from the raw
waveform signal to the classification result.

2. Algorithm

In order to achieve end-to-end classification the neural
network has to learn three tasks: extract meaningful fea-
tures from the raw waveform, encode the time-dependent
features into a single vector that describes a recording and
finally classify as normal/abnormal (see figure 1).

In our neural network, the feature extraction is per-
formed by a 1-dimensional convolutional front end, which
learns to extract frequency and waveform features. Sub-
sequent recurrent layers learn sophisticated long-term de-
pendencies hidden in the extracted time-frequency features
of the heartbeats.

A feed forward attention mechanism is used to aggre-
gate the distributed information in the output of the last
recurrent layer into a single decision. Output of each in-
terval is weighted by importance and a weighted average
is computed as a fixed representation of the whole record-
ing. This last step can be interpreted as embedding each
processed recording into a fixed vector space. Using this
attention-weighted average, a multilayer perceptron classi-
fies each recording as normal/abnormal.
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Figure 1. Simplified schematic used for end-to-end classification.
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2.1.  Architecture

In the following we describe the architecture of the neu-
ral networks in more detail. We optimised the architecture
in multiple steps. The final structure of the deep neural
network is displayed in table 1.

Table 1. Layers of the neural network including layer-
specific parameters.

# Layer Type Parameters

1 Gaussian Noise le-6

2 Batch Normalisation -

3 Convolution 1D 16x16,relu
4 Convolution 1D 16x32,relu

5 Convolution 1D 16x64,relu

6 Convolution 1D 16x128,relu
7 Max Pooling 1=256,s=128
8 Batch Normalisation -

9 Bidirectional GRU 16+16

10 Batch Normalisation -

11 Bidirectional GRU 16+16

12 Batch Normalisation -

13-15 Feed Forward Attention MLP  64-8-1,linear
16 Temporal Softmax

17 Weighted Average
18-21 Dense MLP w/ Dropout

64-8-1,p=0.5

Raw waveform data is fed as input into a batch normal-
isation layer [2], which standardises the input data using
batch statistics. More batch normalisation layers are used
after the convolutional layers and after each recurrent layer
in order to accelerate training.

The normalised input is symmetrically zero padded and
sent to four 1-dimensional convolutional layers with 16
filter maps each. The filter maps have varying lengths
(16, 32, 64, 128) and use a RelLLU activation. When
fully trained, the convolutional layers act as frequency and
waveform matcher. While the filters could be compared
to wavelets, they don’t resemble commonly used wavelets
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Figure 2. Visualisation of filters; coloured by filter.
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Figure 3. Visualisation of frequency response of each fil-
ter; from low response (white) to high response (dark vio-
let).

(see figure 2). Instead, they respond to frequency patterns
which are present in the raw recordings (see figure 3).

The filter responses are concatenated and a max pooling
layer is used to remove redundancy. The max pooling layer
aggregates intervals of length 256 (128 ms) and stride 128
(64 ms) by selecting the maximum value in each interval.
The result of this first part of the feature extraction are so-
called pooled normalised feature maps.

The following main part of feature extraction is per-
formed by two layers of bidirectional gated recurrent units
(GRU) [3]. GRUs have been shown to be comparable in
performance to long short-term memory (LSTM), but sim-
pler [4]. Compared to ordinary recurrent neural networks,
these units use a gating mechanism to update and reset the
hidden state, enabling them to learn long-term dependen-
cies. We use bidirectional GRU layers with 16+16 units.
The activations of both recurrent layers are visualised in
figure 4.

A feed forward attention mechanism, proposed by [5],
is used to aggregate all relevant information of a recording
into a descriptive vector: A small dense feed forward net-
work (64-8-1), followed by a softmax over time, is applied
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Figure 4. Visualisation of recurrent activations for record-

ing c0014; top: first GRU layer, bottom: second GRU

layer; from negative act. (blue) to positive act. (red).
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Figure 5. Visualisation of attention mechanism for recording c0014; colour corresponds to importance/attention from low

(blue) to high (red).

to the output of the last recurrent layer. Using the output
of the attention network as weights, a weighted average of
all intervals is calculated (see figure 6). Figure 5 shows
how the network attends to different parts of a recording,
especially heartbeats.

We use dropout [6] as a regulariser to prevent overfitting.
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Schematic of attention mechanism; modified

Figure 6.
from [5].

The last step is the classification of the aggregated de-
scribing vector, implemented as a second (64-8-1) multi-
layer perceptron with a single output neuron with tanh ac-
tivation.

2.2.  Training

Hinge loss is used as optimising objective, using a
weighting with inverse class frequencies 0.789/0.211. The
differences between cross entropy loss and hinge loss
turned out to be negligible.

The stochastic gradient descent variant Adam is applied
as optimiser [7]. We used a training/validation split of
85% /15%, with mini batches of 128 recordings using pre-
padding with zeros for shorter sequences. The order of
samples is permuted after each epoch. Instead of training
a fixed number of epochs, we perform two training runs of
96h with learning rates of 10~% and 10~° respectively.

We preprocess the recordings by normalising the am-
plitude using 1%/99% percentiles and clipping exceeding
values. The weights of the best epoch measured by perfor-
mance on whole dataset are used for the submitted chal-
lenge entry.

In addition to dropout we use 12 weight regularisation

of 0.01 for dense feed forward layers, convolutional lay-
ers and GRU layers. Convolutional layers were initialised
with sine waves of random frequency between 10 Hz and
100 Hz. Glorot uniform initialisation is used for dense feed
forward layers and GRU input weights and orthogonal ini-
tialisation for recurrent weights.

Networks were implemented and trained using Keras [8]
running on top of Theano [9]. The training was done on
CPUs. Up to 64 GB of memory were temporarily required,
depending on batch size and length of the recordings.

3. Data augmentation

Big neural networks can be quite hungry in terms
of training samples required. Whereas currently trend-
ing deep neural networks in speech recognition, machine
translation and computer vision use up to a million sam-
ples, a restricted set of 3,153 heart sound recordings is
available for this Physionet Challenge. We work around
this limitation by augmenting the heart sound recordings
using various audio effects provided by SoX [10]. All ef-
fects used a listed in table 2.

Table 2. Effects used for data augmentation.

Effect Parameters

Tempo +10%,-10%

Speed +5%,-5%

Dither 6/7/8 bits

Volume +30%,-30%

Mix Speech OSR 16/36 [11]

Pitch +semitone,-semitone

Mix PASCAL  Atraining_normal 201101070538 [12]
Random Combination of everything above

This results in a artificially increased dataset of 53,601
augmented recordings, which should prevent memorisa-
tion and improve generalisation. To further impede mem-
orisation we randomly crop up to 5% from the beginning
and up to 20% from the end of a recording dynamically
during training.



4. Results

Using a moderately sized neural network and a train-
ing/validation split of 85%/15%, we can report a result
of 0.89 using the non-revised challenge scoring (0.90 on
training data). A detailed listing per dataset is shown in
table 3. The highest submitted phase two entry has a non-
revised score of (.77 and a revised score of 0.827.

Concerning the challenge sandbox our submitted entry
uses less than 20% of the available computation quota.

Table 3. Classification results for the challenge datasets
A-F, without training/validation split.

Dataset # Recordings Sensitivity Specificity = Score

A 409 0.99 0.11 0.55

B 490 0.79 0.53  0.66

C 31 1.00 0.00  0.50

D 55 1.00 0.07  0.53

E 2054 1.00 0.98 099

F 114 1.00 0.02  0.51

Total 3153 0.96 0.83  0.89
S. Discussion

We present a deep neural network as solution to the 2016
PhysioNet/CinC Challenge. The network is strictly regu-
larised and small in terms of weights (21, 924) compared to
commonly used deep architectures. This reflects the lim-
ited number of only 3153 training samples, although the
number of actual training patterns has been artificially in-
creased by a factor of 17 by augmentation.

Applying a 85%/15% training/validation split, we
achieve scores between 0.89 and 0.90 with a difference of
typically about 0.01 between training and validation data.
At first glance this results indicate a good generalisation of
the classifier. However, performance on the subsets of the
dataset differs dramatically (from 0.99 for subset E to 0.51
for F, see table 3). It seems that during training the network
mainly adapts to dataset E that in fact comprises the major-
ity of the PCGs. The final score of only 0.83 on the hidden
challenge dataset is consistent with this findings. Interest-
ingly, the revised scoring resulted in an increased score and
areduced difference between performance on training data
and hidden data.

For the final classification step, the feed forward atten-
tion mechanism turned out to be superior to naively using
the output of the last interval of the recurrent layer.

We have to conclude that, in contrast to the apparently
good generalisation, prediction of unseen data is still a
challenging task for the neural network. Additional work
is necessary to further improve its predictive power.

A bigger neural network with more adjustable weights
might be necessary to represent all different types of PCGs
in the highly diverse training and validation data. However,
training of such a bigger neural network would require ad-
ditional methods for augmentation or at best, (much) more
example PCGs for training.
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