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Abstract

In the context of the PhysioNet/CinC 2016 Challenge,
where a relatively large, labeled data set of phonocardio-
grams (PCGs) was made available, this work presents a
mixed approach to the problem of its binary classifica-
tion. Instead of laboriously selecting a set of PCG signal
features that capture the fundamental differences between
healthy and unhealthy heart sounds, a rather exhaustive
set of features is generated for each heart beat segment,
which is then represented in a 4-way tensor. In a second
stage, such tensor representation is decomposed and com-
pressed, to determine only a few of the most discriminat-
ing parameters, which are then fed to an otherwise stan-
dard classifier. This results in an accurate, compact and
fast algorithm, that can effectively classify noisy PCG sig-
nals of different duration, achieving a balanced accuracy
of 91.9% in 10-fold cross-validation, and 84.54% on the
Challenge hidden test data (the 4" highest score).

1 Background

Heart disease continues to be the leading cause of death
in most countries, and its early diagnosis and treatment is
key in improving long term health outcomes. Nowadays,
the medical profession enjoys a powerful set of tools for
its diagnosis, including electrocardiographs, magnetic and
ultrasound scanners, echocardiographs, cardiac MRIs, 3D
CT scans, etc. However, most of these instruments are only
found in relatively large hospitals, require trained profes-
sionals to operate them, and medical doctors to interpret
the observations. Alternatively, auscultation of the heart
has been a traditional aid to the early detection of heart
disease, that only requires a stethoscope and a trained lis-
tener. But with the advent of such advanced tools, med-
ical practitioners are quickly loosing their heart ausculta-
tion training and ability [1]. The notion of an electronic
stethoscope that could aid the listener or even provide a
diagnosis, has eluded a practical and effective answer for
decades [2]. Recent advances in machine learning and the
development of small computing devices, such as smart-
phones, promise to soon give a more definite answer to
this problem. This environment has promoted a surge of
research around this topic, part of which is summarized in
[2,3], and competitions such as this Challenge [3].
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Here we tackle the problem of classifying PCGs as nor-
mal or abnormal, using well known tensor-based machine
learning techniques that have been successfully applied to
other signal classification and data compression problems
[4,5]. Feature extraction is at the heart of an accurate
classification algorithm. Tensor methods provide an effec-
tive way of reducing the dimensionality of a feature space.
Here we will use a tensor decomposition approach that
maximized the discriminating power of the compressed
data, which is a natural extension of Discriminant Anal-
ysis to higher order data arrays.

2 Tensor decomposition and dimensionality
reduction

A tensor is a multi-way array of data, and is the natural
generalization of a matrix when the order is higher than
two. Real tensors of order IV are denoted by underlined,
bold, capital letters, e.g. X € R+ */=""xIn: matrices are
denoted by bold, capital letters, e.g. A € R’*7; and vec-
tors by bold, italic, lowercase letters, e.g. v € R’.

A tensor’s mode-n fiber is a vector obtained by fixing
all indices but the nth one. A mode-n matrization of a ten-
sor X € RI:x1=xIN i an unfolding or flattening of the
tensor along its nth way, obtained by arranging its mode-n
fibers as columns of a matrix. Such matrix is represented
by X(n).

The n-mode product of a tensor and a matrix is de-
noted by Y = X X, A, and in its equivalent matrix form,
Y (n) = AX(,). Multiplication in all possible modes of
a tensor G and matrices A(™, forn = 1,2, ..., N, is de-
noted by G x1 AM x5 A@ ... xn AWM or in short
G x {A}. Multiplication of a tensor by all but one mode
is indicated by G x_,, {A}, and G X _(p, ) {A} when
two modes, n and m, are skipped. Finally, we define the
contracted product of tensor X € RI:*T=*IN and ten-
sor Y € R7:xJ2XJ~ along all modes except mode-n, as
(X Y)_, =X, X[, € RIxTn,

As a natural extension to matrix factorization, tensors
can be decomposed in many different ways, the simplest
being as the sum of rank-one tensors (known as CP de-
composition). A rank-one tensor in R: X1 XI~ ig given
by the outer product of N vectors in R». Now, tensor
rank is an elusive and complex concept, which reflects on
the theory of tensor rank approximation (for a review, see
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Figure 1. Tucker approximation of a 3-way tensor

[6]). A more general form, known as the Tucker decompo-
sition, decomposes a tensor into a core tensor G multiplied
by matrices along each mode. When the decomposition is
inexact, it is call Tucker approximation (see Figure 1 for
a 3-way illustration). The Tucker decomposition is richer
than the CP, in that it includes interacting elements in the
core tensor. In fact, the CP decomposition is a special case
where the core tensor has nonzero elements only in its su-
perdiagonal. In short, for the general case, a Tucker ap-
proximation can be written as:

XaGx1 AW x5 A@ oy AW = G x {A}

A special form of Tucker decomposition, known by
Tucker-N, results when the (N + 1)-th factor matrix cor-
responding to an (N + 1)-order tensor, is forced to be the
identity. This is illustrated in Figure 2, viewed as the si-
multaneous decomposition of K tensors (K being the di-
mension of the (N + 1)-way), that when concatenated pro-
duces an (N + 1)-way core tensor.

In the special but common case where factor matrices
A (™ are orthogonal, the Tucker decomposition reduces to
a higher order form of principal components. For algo-
rithmic simplicity, this is the form generally used, and fac-
tor matrices are denoted by U™ as is customary in such
cases. Hence,

G~ Xx, ULT ,UuAT . . yUMT = XX{UT}

Given a choice of dimensions for G, the Tucker factor
matrices can be computed to achieve a certain objective,
for instance, to minimize the Frobenius norm of the ap-
proximation error (see [7]), as in data compression. How-
ever, a more effective objective for the problem at hand,
is to maximize the high order generalization of the Fisher
score corresponding to the core tensor. That is,
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where C' is the number of classes, K. is the number of
samples in class c, g(c) is the average core tensor over

samples in class c, G is the average core tensor over al
samples, and Q(Ck) is the average core tensor for class cy.

It can be shown (see [5]) that Eq.1 is equivalent to solv-
ing the following high-order trace-ratio optimization prob-
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Figure 2. Simultaneous Tucker approximation
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where S_," = (Zin,zinﬂn is the n-mode within-
class scatter matrix, and S;" = (Zin,zinﬁn is the
n-mode between-class scatter matrix. In this notation,
Z " =Xx (n.n+1) {UT}, where X is the concatenation
of X(k) = X(k) — X(Ck) (centered tensors), and Z_n =

X X(n,N+1) {UT}, where X(C) = vKe (X(c) - X)
Problem 2 can be solved alternating over each mode,

by solving two generalized eigenvalue problems on each

mode at each iteration. See [5] for algorithmic details.

3 Feature space selection and data tensor
build-up

In the previous section we have established the basic
mechanics for reducing the dimensionality of the data ten-
sor, while maximizing its discriminating capacity between
sample classes. In this section we define how to fill the
data tensor, given a set of heart sound recordings. For
this, we start with a rich time-frequency feature space,
given by combining Mel Frequency Cepstral Coefficients,
or MFCCs, and the Maximal Overlap Discrete Wavelet
Packet Transform, or MODWPT. MFCCs were developed
around the characteristics of human hearing, and are typ-
ically used in speech recognition application. Both have
been used in previous work, as reported in [2, 3]. The
following sequence summarizes the processing applied to
each recording:

1. 1000 Hz resampling and normalization.

2. S1/Systole/S2/Diastole segmentation of each complete
heart beat, by direct, unmodified use of the Springer algo-
rithm [8].
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Figure 3. Tensor representation of the k-th recording

3. Computation of MFCCs (using code from [9]), inde-
pendently for each segmented sequence and each heart-
beat, including energy, “delta” and “delta-delta” coeffi-
cients, using Hanning time windows, such that the total
power of the FFT is preserved. This generates 13 x 3 coef-
ficient series, of different lengths depending on the length
of the input sequence segment. If the minimum length of
128 is not met, such input sequence is extended in a peri-
odic fashion (this was found to be better than padding with
Zeros).
4. Computation of MODWPT independently for each seg-
mented sequence and for each heartbeat, using a 6t" level
decomposition of the Symlets wavelet family of order 8
(i.e., sym8). Again, if the minimum support of 64 is un-
met, the input sequence is periodically extended to meet
the requirement. This transformation generates 64 coeffi-
cient sequences, with lengths equal to the input sequence.
5. At this point we have expanded the feature space signif-
icantly. So next we compute some basic descriptive statis-
tics of each coefficient sequence to carry through, namely
their arithmetic mean, and their mean absolute deviation
as a measure of dispersion (which was found to be more
informative than the standard deviation). Hence, for each
segment of each heartbeat we have 13 x 3 x 2 MFCC re-
lated features, and 64 MODWPT dispersion related fea-
tures (the means are near zero, so they are not included).
Later experimentation showed that about half of these fea-
tures have a small or null contribution to the classification
performance. Hence, they could be eventually removed in
a practical application.
6. These features are arranged in a 3-way tensor, as shown
in Fig. 3. Then, the kth recording tensor, X(k), will have
dimensions 142 X 4 x (# heartbeats).
7. Lastly, in order to concatenate all recording tensors into
a 4-way tensor, X, we need to accommodate the fact that
the number of heartbeats differ for each recording. Again,
we are faced with the need to complete “missing” infor-
mation. Since we do not want the length of the recordings
to dominate the spatial structure of the data, we extend all
recording features to match the longest one, by repeating
the series from the start, in total or in part, as many times
as necessary.

The output of this process is a dense, 4-way data tensor,

of dimensions 142 x4 x 172 x# of recordings in the data set.

Database | Recordings Normal Abnormal
a 409 117 292
b 490 386 104
c 31 7 24
d 55 27 28
e 2054 1871 183
f 114 80 34
Total 3153 2488 665

Table 1. Summery of Training Set

To this tensor we apply the methods described in Section
2 to obtain a core tensor of reduced dimensions and higher
discriminating power. The choice of core tensor dimen-
sions is done heuristically, based on classification perfor-
mance, via a grid search. The forth dimension remains
fixed (i.e., Tucker-3 decomposition), while the first three
dimensions are varied in combinations such that the total
number of elements in G %) s of the same order of magni-
tude as the number of samples in the minority class. Then,
these elements are sorted out in descending order of their
Fisher scores (element-wise version of Eq. 1), and only the
top F' elements are fed to the classifier (around 1/10th of
the total). Hence, the dimensionality reduction achieved is
on the order of 1000:1. Note that the indices of the top el-
ements need to be stored for classifying new observations.
To reflect the different amount of information in long
recordings vs short (extended) ones, a weighted version of
Eq. 1 was used, where all tensor averages were weighted
with an ad-hoc weight defined as the number of heartbeats
to the 1/3 power (this achieved a somewhat better perfor-
mance than the more principled 1/2 power). Finally, it is
worthwhile noting that no normalization is needed on the
tensor. (Note: all coding was done in Matlab, using its
standard toolboxes, and some functions from [10].)

4 Classification approach and results

The supplied data set is listed in Table 1 (for a detailed
description see [3]). Each database corresponds to a dif-
ferent healthcare institution/professional who contributed
the data. Early on in this investigation, it was noted that
database e behaved differently from the rest. Not only is
the largest one, but also the easiest to separate between
classes (over 99% balanced accuracy). The reason for
this is intriguing and worth investigating further. A re-
view of the acquisition practices described in [3], suggests
that the fact that all healthy patient recordings were done
with one type of sensor, while all unhealthy ones with an-
other type of sensor, may explain this in part. The orga-
nizers also provided signal quality labels on the record-
ings (good/poor) and “unsure” diagnosis label based solely
on PCG listening by a group of experts. The availabil-
ity of such additional information suggests that a 4-class
to 3-class classifier (normal-good/normal-poor/abnormal-



Validation 10-fold CrossVal  Test Data
Bal. Accuracy 91.9 % 84.54%
Sensitivity 94.6 % 86.39%
Specificity 89.3% 82.69 %

Table 2. KNN Performance metrics.

Training DB Bal. Accuracy Sensitivity — Specificity
Only e 98.6% 98.5% 98.7%
All but e 77.6% 78.5% 76.7%

Table 3. 10-fold CrossVal using different databases.

poor/abnormal-good to normal/unsure/abnormal) by pos-
terior probability aggregation, could outperform a binary
classifier. However, this was not confirmed to be the case,
with the caveat that the multi-class approach was only ap-
plied in the last classification stage, and not in the ten-
sor compression stage which remained binary (a restriction
that could be removed in future work).

Several classification algorithms were tried on the re-
sulting F' x 3153 observation matrix, including logistic
regression, support vector machines, K-Nearest Neighbor
(KNN), ensemble methods, etc. After much experimenta-
tion and fine tuning, based on 10-fold cross validation runs
and on random tests carried out by the Challenge organiz-
ers on hidden data, the best performance was obtained with
a KNN classifier with the following parameters:

« Core tensor dimensions: 23 x 4 x 5.

e FF=45and K = 10.

« Inverse-squared of Spearman distance.

« Feeding of features and its squares (pure quadratic).

o Standardized features (zero mean, unit variance).

o Weighted observations (cubic root of the number of
complete heart beats).

The problem of imbalanced data was dealt with by
shifting the decision boundary on the posterior probabil-
ity (scores) given by the classifier, chosen to be equal to
the minority class proportion, that is 665 + 3153 = 0.211.
Therefore, observations with posterior probability greater
than 0.211 were classified as Abnormal. Table 2 summa-
rizes the classifier performance in a random, 10-fold cross
validation (average of 3 runs), and on hidden test data
(1,277 recordings). This resulted in the 4" top perfor-
mance among the Challenge participants.

In order to evaluate the generalization error, this ap-
proach was tried on different aggregations of databases.
First, in Table 3, we compare a 10-fold CrossVal with only
database e as training set, vs one with all databases but e.
Then, in Table 4, a classifier was trained by leaving out one
database at a time, on which it was then tested.

One can conclude that the approach generalizes poorly
when a database is not represented in the training set, and
that the contribution of database e is key in achieving a
good performance on the whole set. This also suggests

Test DB Bal. Acc. Se Sp
a 56.2% 79.1%  33.3%
51.8% 37.5% 71.2%
541%  95.7% 12.5%
59.3% 96.4%  22.2%
48.0% 77.6% 18.3%
50.6% 100.0% 1.3%

|||

Table 4. Leave-out test on different databases.

that in order to obtain reliable results with a practical de-
vices, both the instrumentation/sensor and the recording
procedure will demand some degree of standardization.

Note: Author is a Visiting Scholar at MIT, affiliated to IAE Business
School, Austral University, Argentina, email: idiazbobillo@iae.edu.ar:
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