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Abstract

Various approaches have been proposed to detect the
R-waves in the ECG. From the derivative-based to more
complicated wavelet transform methods, the main goal of
these approaches is to extract the R-waves from the per-
turbations present in the ECG. Our study aims at propos-
ing a simple preprocessing tool that suppresses perturba-
tions and enhances the R-waves in the ECG. Using sliding
windows, short- and long-term signal energies are calcu-
lated for each sample in the ECG. A coefficient signal is
then created as the ratio between the corresponding short-
and long-term energies. The enhanced ECG is then calcu-
lated by multiplying the coefficient signal and the original
ECG. The MIT-BIH database was used for evaluation and
the proposed method was tested against synthetic white
and EMG noises. Using the proposed method as a pre-
processing tool to the classic Pan-Tompkins approach lead
to a significant decrease over the number of false positive
and false negative QRS complexes, when synthetic noise is
added to ECG.

1. Introduction

Electrical activity within the heart generated in the atria
and propagated throughout the heart can be captured at
body surface. A time-series representation of these activ-
ity, i.e. the electrocardiogram (ECG), comprises different
waveforms representing depolarization and repolarization
of different sections of the heart. Detection of heartbeats
brings useful information that enables studies such as heart
rate variability (HRV), cardiac disease diagnostics and the
detection of ectopic beats such as premature ventricular
contractions (PVC). The QRS complex is the most distinct
waveform in the ECG. It corresponds to the contraction of
ventricles, and has been mainly used for automatic heart-
beat detection. However, the detection of R-waves is not
an easy task as perturbations such as power-line interfer-
ence and base-line wandering can be present in the ECG.

Over the years many R-wave detection algorithms have
been proposed. A review of traditional approaches can
be found in [1][2]. From basic derivative to complex ap-
proaches such as time-frequency analysis, generally the
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ECG at hand is first filtered by either low-pass filtering
in order to remove high frequency activities and remove
the effect of power-line interference, or by band-pass fil-
tering to remove the effect of baseline wandering as well
as the aforementioned unwanted activities. Then, the fil-
tered ECG is further analyzed in order to extract the R-
waves using heuristically chosen features. Pan and Tomp-
kins proposed a detection approach based on the analy-
sis of slope, amplitude and width of the QRS-complexes
[3]. Mathematical morphology methods benefit from the
shape and location of fiducial points in the QRS-complex
and used them to extract R-waves [4][5]. Filter bank and
Wavelet methods detect QRS-complexes by investigating
modulus maxima in respectively different sub-bands and
wavelet scales [6][7].

All QRS complex detection methods aim at finding a
suitable mathematical description which can identify the
R-wave in the ECG while suppressing perturbations and
other ECG waveforms, i.e. P-,T- and U-waves. While
complex methods have proven to be powerful R-wave de-
tectors, they are not suitable for low cost and energy con-
sumption scenarios such as body area networks (BAN). In
BANSs computation cost and power consumption set the
limits and therefore fast, energy efficient and yet robust
methods are only considered as suitable candidates. In this
paper, we aim at proposing a novel, fast and efficient algo-
rithm that can be used as an R-wave detection method or
as a preprocessing tool to other R-wave detection methods.
The proposed method works based on the relative short-
and long-term energies in the ECG and aims at suppress-
ing perturbation while enhancing ECG R-waves.

2. Methods

2.1. Evaluation Data

In order to evaluate the proposed method, the publicly
available database of MIT/BIH-arrhythmia database was
used [8]. Over the years, this database has become a stan-
dard database on which several algorithms have reported
their results. The MIT/BIH arrhythmia database has a set
of 48 two-lead ECG recordings with a length of 30 minutes
with a sampling frequency of 360 Hz and 11-bit resolution
within the range of 10 mv. The evaluation on this database
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Figure 1. Performance of the relative short-long term energy on Tape 104 of the MIT/BHT arrhythmia database.

was performed on the first lead, which is either a modi-
fied lead II or lead V5, and results were checked with the
reference annotation file provided for this database.

2.2. Method Outline

By analyzing the QRS complex in noisy ECG record-
ings, we came to the understanding that even in cases
where severe levels of noise are presents in the ECG, QRS
complexes are discernible due to the impulsiveness of R-
waves. In other words there is a meaningful difference be-
tween the baseline power and that of a QRS complex. The
proposed method in this paper, referred to as the relative
energy algorithm, works on this basis.

Using two sliding windows, short- and long-term signal
energy powers are calculated for each sample in the ECG.
For each sample a coefficient signal is created using Eq. 1.
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Where n represents the n*" sample of Sig. Parameters
Swin and ly,;, are respectively half of the length of short
and long sliding windows.

In our study, the short sliding window has a duration of
150ms while the longer sliding window has a one second
duration. Afterwards, the non-negative coefficient signal
is divided by its maximum value in order for it to have a
range of [0, 1]. Finally, the enhanced ECG is calculated by
multiplying the coefficient signal and the original ECG. As
QRS complexes have relatively higher energy in compari-
son with P-, T-waves and the noise in the signal, the coeffi-
cient signal values are close to one where QRS complexes
take place in the ECG while smaller elsewhere. Fig.1 il-
lustrates an example of ECG enhancement based on the

short-long term relative energy on a noisy part of tape 104
of the MIT/BIH arrhythmia database.

3. Results and discussion

In order to evaluate the proposed algorithm on the
MIT/BIH arrhythmia database, first ECGs were high-pass
filtered with a 4H z cutoff frequency followed by apply-
ing the relative energy algorithm. Then, the R-waves were
extracted from the output by finding peaks with normal-
ized amplitude greater than 0.02 and a minimum distance
of 250ms. Tape-by-tape results are reported in table 1. In
this table, the detection error rate (DER) as well as sensi-
tivity (Se) and positive prediction value (PPV), calculated
through Eq. 2-4, were used for evaluation.

TP
S = TP T FN 2)
TP
PPV =+
V=Tp+Fp )
FP+FN
DER — + )

Total No. of Beats

where TP, FN and FP respectively represent true positive,
false negative, and false positive beats calculated based on
the reference annotation file.

Table 2 compares the performance obtained by our al-
gorithm with that of well-known QRS detection methods.
As shown in this table, the relative energy algorithm leads
to robust ECG R-wave extraction with results comparable
to that of the state-of-the art.

Results reported in tables 1 and 2, suggest that the pro-
posed method can efficiently extract R-waves from the
ECG. In order to find out how the proposed method per-
forms when perturbations are present the ECG, we eval-
uated it against white and synthetic electromyographic



Table 1. Performance of the proposed method on QRS
complex detection on MIT/BIH arrhythmia database.
[ Tape No. | No. of Beats | FP [ FN | DER % [ Sensitivity [ PPV |

100 2272 0 0 0 1 1
101 1869 2 2 0.11 0.9989 | 0.9989
102 2186 0 0 0 1 1
103 2083 0 0 0 1 1
104 2228 28 0 0 1 0.9874
105 2602 23 | 14 0.54 0.9946 | 0.9911
106 2027 1 0 0 1 0.9995
107 2137 0 0 0 1 1
108 1771 20 | 1 0.056 0.9994 | 0.9887
109 2531 0 0 0 1 1
111 2124 2 1 0.047 0.9995 | 0.9991
112 2538 0 0 0 1 1
113 1794 0 0 0 1 1
114 1880 1 0 0 1 0.9995
115 1958 0 1 0.051 0.9995 1
116 2411 1 17 0.71 0.9929 | 0.9996
117 1534 1 0 0 1 0.9993
118 2278 1 0 0 1 0.9996
119 1987 0 0 0 1 1
121 1862 0 0 0 1 1
122 2477 0 2 0.081 0.9992 1
123 1518 0 0 0 1 1
124 1618 1 0 0 1 0.9994
200 2600 8 2 0.077 0.9992 | 0.9969
201 1963 0 6 0.31 0.9969 1
202 2137 2 3 0.14 0.9986 | 0.9991
203 3006 7 | 38 1.3 0.9873 | 0.9976
205 2656 0 5 0.19 0.9981 1
207 2334 7 1 0.043 0.9996 0.997
208 2962 1 | 20 0.68 0.9932 | 0.9997
209 3011 2 0 0 1 0.9993
210 2650 6 | 10 0.38 0.9962 | 0.9977
212 2748 1 0 0 1 0.9996
213 3250 0 1 0.031 0.9997 1
214 2266 2 4 0.18 0.9982 | 0.9991
215 3362 0 1 0.03 0.9997 1
217 2209 0 1 0.045 0.9995 1
219 2154 0 0 0 1 1
220 2047 0 0 0 1 1
221 2427 0 3 0.12 0.9988 1
222 2482 2 0 0 1 0.9992
223 2604 0 0 0 1 1
228 2077 24 | 6 0.29 0.9971 | 0.9884
230 2257 0 0 0 1 1
231 1570 0 0 0 1 1
232 1780 16 | 0 0 1 0.991
233 3080 0 4 0.13 0.9987 1
234 2753 0 1 0.036 0.9996 1

[ Total | 110070 [ 159144 ] 028 [ 0.9987 ] 0.9986 |

Table 2. Comparison of performance with previously pro-
posed methods on MIT/BIH arrhythmia database.

[ Fiducial point [ No. of Beats | FP [ FN | Failed detection % | Ref. No. |
REL_EN 110070 159 | 144 0.28 —
Pan and Tompkins 116137 507 | 277 0.675 [3]
Lietal. 104184 65 112 0.170 [71
Yazdani and Vesin 109494 108 | 137 0.224 [4]
Zhang and Lian 109510 204 | 213 0.38 9]
Ravanshad et al. 109428 651 | 1216 1.71 [10]
Martinez et al. 109428 153 | 220 0.34 [11]
Bahoura et al. 109809 135 | 184 0.29 [12]
Moody and Mark 109428 94 | 1861 1.79 [13]
Lee et al. 109481 137 | 135 0.43 [14]
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Figure 2. Performance of the relative short-long term en-
ergy against added synthesized EMG noise. RR-intervals
are uniformly sampled in time, for demonstration. Tape
100 of the MIT/BHT arrhythmia database.

(EMG)noise, created by fitting an autoregressive model
on EMG recordings from the Physionet/CinC2014 chal-
lenge database [15]. Using clean segments of ECGs in the
MIT/BIH arrhythmia database, different levels of noise,
from an input signal-to-noise ratio (SNR) of 100 to -
20, were incrementally added to the ECG. Then, R-wave
extraction performance was tested against Pan-Tompkins
algorithm and the hybrid Pan-Tompkins/relative short-
longterm energy algorithm, in which the output of the pro-
posed method was used as the input to the Pan-Tompkins
QRS detection algorithm. Results show robust extraction
of R-waves up to an input SNR of 0 or below, both against
white and synthetic EMG noises. Figure 2 illustrates the
performance of the hybrid algorithm and compares it with
Pan-Tompkins. In this example, an EMG noise was added
to tape 100 from the MIT/BIH arrhythmia database mak-
ing an input SNR of -0.12. Since the number of extracted
R-waves are different in the top three sub-figures, the cal-



culated RR-intervals were uniformly sampled in time in
order to have a more sensible comparison. As seen in this
figure, the RR-interval extraction is significantly improved
when the hybrid approach is applied to the ECG, with sim-
ilar results on white noise. This simply defined algorithm
can be used to make R-wave extraction more robust.

4. Conclusion

In this paper, we propose a simple preprocessing tool
that uses the ratio between short- and long-term ECG en-
ergies in order to suppress perturbations and make QRS
complexes more prominent in the ECG. The proposed
method is simply defined and can be easily computed,
making it a suitable preprocessing tool for QRS complex
detection algorithms. Using two simple thresholds on the
output of the proposed method, an efficient R-wave extrac-
tor was created and evaluated on the MIT/BIH arrhythmia
database. With sensitivity of 99.87% and a detection er-
ror rate of 0.28%, the proposed method obtained results
comparable to more complex state-of-the-art algorithms.
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