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Abstract 

Congestive Heart Failure (CHF) is a disease caused 
by the inability of the heart to supply the needs of the 
body in terms of oxygen and perfusion. Detection and 
diagnosis of CHF is difficult and requires a battery of 
tests, which include the electrocardiogram (ECG). 
Automated processing of the ECG signal and in 
particular heart rate variability (HRV) analysis holds 
great promise for diagnosis of CHF and more generally 
in assessing cardiac health, especially for personalized 
mobile health. However, recording the full 12-lead ECG 
is a relatively invasive procedure and for that reason it is 
of interest to determine what can be deduced from the 
much less intensive measurement of heart rate (RR 
interval) alone. In addition to calculating SDNN and, 
RMSSD, which when combined gave an accuracy of 
78.8% with the Nearest Neighbour classifier. The best 
Renyi entropy result was an accuracy of 66.7% using 
Nearest Neighbour. Combining the best Renyi entropy 
results with SDNN and RMSSD led to an overall 
accuracy of 87.9% with sensitivity of 80% and specificity 
of 94.4%. In this work we have shown that applying Renyi 
entropy in addition to standard time domain measures 
identified CHF with higher accuracy than using time 
domain measures only. In addition, Renyi entropy 
exponents provide further information about the time 
signal characteristics that may be important in clinical 
decision making. 

1. Introduction

Congestive Heart Failure (CHF) is a disease 
characterised by the inability of the heart to supply the 
needs of the body in terms of oxygen and perfusion 
leading to either compensated or uncompensated heart 
failure depending on the contribution of the sympathetic 
branches of the autonomic nervous system [1]. 
Identification of CHF is a complex process that includes 
medical imaging and 12-lead ECG, which are both 
relatively invasive. However a simple 3-lead ECG has 
also provided clinical relevant results combined with 

HRV analysis [2]. Many different measures and 
guidelines have been developed for automated procedures 
that quantify the variability of the heart rate over time 
(HRV). These may be conveniently divided into time 
domain, frequency domain and nonlinear measures [3]. In 
the latter category, entropy measures quantify the degree 
of randomness in a system. Such measures include 
Shannon entropy, sample entropy, and Renyi entropy 
[4,5,6,7]. Each method has trade-offs relating to accuracy, 
linearity, and processing time. Several of the entropy 
measures may be extended to form multiscale measures, 
where analysis is performed over different scales or using 
different exponents to emphasize large or small values of 
the RR intervals. In previous work, we have shown the 
superior accuracy of the Renyi entropy to differentiate 
cardiac autonomic neuropathy from control, compared to 
other measures [8]. In addition, Renyi entropy is able to 
be applied to both different scales and different 
exponents. Renyi entropy H, is a generalized measure, 
and includes the Shannon entropy as a special case [9]: 

where pi is the probability that a random variable takes 
a given value out of n values, and α is the order of the 
entropy measure. H(0) provides the logarithm of n. As α 
increases the result becomes more sensitive to values 
occurring at higher probability. By using a selection of 
values for α, a picture of the RR length distribution within 
a signal can be obtained, and this collection of measures 
can provide insight into the disease being studied. 

In the implementation used here, the probability pi is 
estimated from the RR interval data by considering each 
sequence of m RR intervals as a point in m-dimensional 
space, and adding the contribution of all other sequences 
using a Gaussian kernel method [8]. 

2. Methods

Data were obtained from the PhysioNet collection and 
comprised 18 patients with Normal Sinus Rhythm (NSR) 
and 15 patients with CHF. From each recording, 1000 RR 
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(approx. 13 minutes) intervals were chosen from the 
middle of the recording to avoid any start-up and ending 
artefacts. The Renyi entropy was calculated using 
exponents 0 < α < 5, and with sequence length I = 1, 2, 4, 
8 and 16. The Mann-Whitney test was used to determine 
the probability of the median of NSR and CHF being the 
same (p < 0.05). 

We applied 5 machine learning algorithms from the 
Weka toolbox [10] including Naïve Bayes, Sequential 
minimal optimization (SMO), Nearest Neighbour, 
Decision Table and Decision Tree to this dataset, and 
used SDNN, RMSSD and Renyi entropy as input 
measures. 

Naïve Bayes [11] estimates prior probabilities for each 
class by calculating simple frequencies of the occurrence 
of each value of each measure, given the class, then 
returning a probability of each class for unseen records. 

Sequential Minimal Optimization (SMO) is based on 
the Support Vector Machine (SVM), which identifies 
records that define the boundaries of the different classes. 
SMO builds on this using polynomial kernels [12]. 

Nearest Neighbour [13] stores example records during 
training. An unlabeled record is compared to all records 
in the training set, using a distance measure, and the 
closest record is used to assign a class label. 

Decision Table divides the dataset into cells, where 
each cell contains identical records. A record with 
unknown class is assigned the majority, or most frequent, 
class represented in the cell [14]. 

Decision Tree uses a version of the C4.5 decision tree 
algorithm [15], known as J48. Each measure is split using 
information gain, forming a branching structure. 
Subsequent splits are used until leaf nodes are formed, 
which contain only members of the same class. Unknown 
records are labeled by following the tree until a leaf node 
is reached. 

Statistics included nonparametric group comparisons 
applying the Mann-Whitney test with p set as significant 
below 0.05. 

3. Results

A comparison of NSR with CHF using standard 
deviation (SDNN) for the two classes provided a 
significant p-value of 0.00039 from a Mann-Whitney test. 
The probability density functions for the two classes are 
shown graphically in Figure 1. This figure shows that the 
two classes are well separated by this measure, as the 
peak of the probability density curve for NSR occurs at 
the minimum for the curve representing CHF. This is as 
expected and supports previous results showing the 
efficacy of using SDNN to separate between these classes 
[16]. RMSSD was also examined to separate the classes, 
and a Mann-Whitney test provided a p-value of 0.00129. 

Figure 1. Graphical illustration of the class separation obtained for the 
standard deviation. 

A comparison of NSR with CHF using Renyi 
coefficients is summarised in Table 1. Results are 
tabulated with values of α vertically increasing from 1 to 
5, and values of m increasing from left to right. The p-
values for a sequence length of 8 are the lowest, 
suggesting a better separation of NSR from CHF using 
Renyi entropy calculated from sequences of 8 RR 
intervals. The lowest p-value of 0.0092 was obtained 
using α = 3. Several low p-values were also found using a 
sequence length of 16, the lowest one being 0.03, 
obtained with α = 4. These values suggest that Renyi 
entropy is able to distinguish between the classes of NSR 
and CHF, but the p values are higher than the value 
obtained using SDNN above. 

Out of these Renyi entropy results, two with the lowest 
p-value are selected for further illustration. These are for 
m = 8 and for m = 16. Figure 2 shows the probability 
density functions for NSR and CHF using Renyi entropy 
with m = 8 and α = 3. Although the classes are clearly 
separated, as indicated by a p-value of 0.0092, the 
separation is not at the same level as shown in Figure 1. 
Figure 3 shows the probability density functions for NSR 
and CHF using Renyi entropy with m = 16 and α = 4. 
Here the classes are also well separated, consistent with 
the p-value of 0.03, but not at the same level as shown in 
Figure 1 for SDNN. However both figures support the 
result from Table 1 that these measures are valuable for 
separating the classes. 

TABLE 1. P-VALUES COMPARING NSR WITH CHF BASED ON RENYI 
ENTROPY. SIGNIFICANT RESULTS (P<0.05) ARE SHOWN IN BOLD. 

Sequence Length

α 1 2 4 8 16 

1 0.800 0.914 0.233 0.019 0.159 

2 1.000 0.857 0.219 0.015 0.096 

3 0.857 0.857 0.294 0.009 0.047 

4 0.800 0.914 0.294 0.015 0.030 

5 0.772 0.885 0.347 0.021 0.033 
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In previous work with cardiac autonomic neuropathy, we 
have shown the efficacy of Renyi entropy as a 
complimentary measure to SDNN, adding additional 
information [16]. In this work, we explored this for the 
CHF data set by first determining the correlation between 
SDNN and Renyi coefficient, and then using a machine 
learning study. 

Figure 2. Graphical illustration of the class separation obtained for the 
Renyi entropy with m=8 and α = 3. 

Figure 3. Graphical illustration of the class separation obtained for the 
Renyi entropy with m = 16 and α = 4. 

In order to illustrate the effects of combining more 
than one measure, we now show results from a 
correlation study. Figure 4 shows the scatter plot of Renyi 
entropy with m = 8 and α = 3 versus SDNN. The plot 
indicates that the two classes are interleaved. This means 
that either measure, by itself, cannot perfectly separate the 
classes, because one measure can only separate using a 
line drawn perpendicular to either the x-axis or y-axis. 
However, by combining two measures in this case, both 
measures contribute towards separation of the classes. For 
example, a simple classification scheme could now, in 
effect, work by drawing a diagonal line to separate 
classes, and so would achieve a better separation. 
Drawing such a line can be optimally performed using an 
automated classification algorithm. 

Figure 4. Scatter plot showing relationship between the Renyi entropy 
with m = 8 and α = 3 and the standard deviation of RR intervals. 

As the classes are obviously interleaved, as illustrated 
in Figure 4, this application would be better served by 
utilizing a machine learning algorithm to provide an 
improved separation. A further advantage of this is that 
such an algorithm is capable of using not only two 
measures as in Figure 4, but any number. Results from 
the classifier algorithms applied and their accuracy are 
now described. 

Table 2 shows results from classification algorithms 
using only two variables: SDNN and RMSSD. The best 
result was 78.8% accuracy using Nearest Neighbour with 
sensitivity of 73.3%. This needs improvement before 
considering time domain measures alone as suitable for 
accurate identification of CHF. 

TABLE 2. RESULTS FROM AUTOMATED CLASSIFICATION USING ONLY 
SDNN AND RMSSD. 

Classifier Sens Spec Acc 
Naïve Bayes 86.7% 61.1% 72.7% 
SMO 46.7% 77.8% 63.6% 
Nearest Neighbour 73.3% 83.3% 78.8% 
Decision Table 53.3% 88.9% 72.7% 
Decision Tree 53.3% 83.3% 69.7% 

Table 3 shows results using only the two best Renyi 
coefficients identified from Table 1, namely H(8,3) and 
H(16,4). Here the best accuracy obtained was 66.7%. 
Although this is consistent with the above analysis, where 
the Renyi coefficients provide a good separation between 
classes, it does not match that provided by SDNN and 
again used as is cannot be used for diagnostic CHF 
identification. 
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TABLE 3. RESULTS FROM AUTOMATED CLASSIFICATION USING ONLY 
H(8,3) AND H(16,4). 

Classifier Sens Spec Acc 
Naïve Bayes 60.0% 66.7% 63.6% 
SMO 53.3% 77.8% 66.7% 
Nearest Neighbour 46.7% 66.7% 57.6% 
Decision Table 20.0% 55.6% 39.4% 
Decision Tree 66.7% 27.8% 45.5% 

Table 4 shows results from classification algorithms 
when the two types of measurements are combined. The 
time domain measures SDNN and RMSSD are combined 
with the Renyi coefficients H(8,3) and H(16,4). The result 
is that classification is much improved, with a maximum 
accuracy of 87.9% using the Nearest Neighbour classifier, 
and good sensitivity of 80% and specificity of 94.4%. 

TABLE 4. RESULTS FROM AUTOMATED CLASSIFICATION USING SDNN 
RMSSD, H(8,3) AND H(16,4). 

Classifier Sens Spec Acc 
Naïve Bayes 80.0% 66.7% 72.7% 
SMO 66.7% 77.8% 72.7% 
Nearest 
Neighbour 

80.0% 94.4% 87.9% 

Decision Table 53.3% 88.9% 72.7% 
Decision Tree 53.3% 83.3% 69.7% 

4. Conclusion

Identification of cardiac pathology including CHF is 
becoming more of an interest to lay people requiring 
simple, accurate and suitable ways of providing 
information. HRV is a simple way of characterising 
structural attributes of a time series. The information from 
a 3-lead ECG is much easier to obtain that a full ECG and 
can be provided by many commercial monitors. Heart 
rate alone can be provided by some smart watches, so is 
accessible to the layperson. The current work shows a 
high degree of accuracy in identifying CHF from short 3-
lead ECG recordings and suggests that Renyi entropy can 
enhance the performance of automated diagnostic tools 
above the performance when using only time domain 
measures. Renyi entropy provides extra accuracy and the 
method of using both time domain and nonlinear 
measures makes it is feasible to add to personalized home 
analysis of short ECG recordings.  
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