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Abstract

This study aims at evaluating the performances of a
wrist-located device to detect atrial fibrillation (AF) based
on photoplethysmography (PPG) technology. Twenty pa-
tients referred for catheter ablation of cardiac arrhythmias
in whom episodes of sinus rhythm (SR) and AF coexisted
were screened. Screening included a 12-lead electrocar-
diogram (ECG) and a PPG device placed at the wrist mea-
suring cardiac pulsatility by means of infrared light. While
reference cardiac interbeat (RR) intervals were obtained
Jfrom the analysis of the ECG signals, RR intervals from the
PPG signals were estimated by detecting systolic down-
strokes on the optical waveforms. Classification of SR ver-
sus AF epochs was obtained via a support vector machine
to which features extracted on 10-second windows were
provided. Extracted features included mean, standard de-
viation, minimum, and interquartile range of RR within an
epoch. A total number of 2213 epochs (1927 of AF, 286
of SR) were analyzed, providing classification accuracy of
93.85% for the PPG-based classifier and 98.93% for the
ECG-based classifier. These preliminary results suggest
that a wrist-located PPG-based monitor might be eligible
for future screening of AF in large populations.

1. Introduction

Since the introduction of portable devices in 1957 by
Dr Norman Holter, ambulatory electrocardiogram (ECG)
monitors have been extensively used for arrhythmia detec-
tion, prognosis, and assessment of efficacy of antiarrhyth-
mic therapy [1]. The global market for Holter monitoring
systems represents thousands of millions of U.S. dollars
and is expected to increase over the next decade [2]. Key
factors of such increase are the rapid rise in the number of
patients suffering from cardiovascular diseases, aging pop-
ulation, and the introduction of innovative products. These
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innovations have been triggered by new ECG-based tools
and the improvement of medical device performances in
terms of volume, battery lifetime, recording capacity, wa-
terproofness, efc.

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia, affecting more than 10.0% of the population
over 80 year old [3]. AF can be symptomatic (palpita-
tions, chest pain, etc.) or asymptomatic and hence diffi-
cult to diagnose in its early stage (paroxysmal). The gold
standard tools for the diagnostics of AF are surface and
implantable ECG monitors. However, despite recent pro-
gresses to make ECG devices portable, this technique is
quite costly and cumbersome for the screening of AF in
large populations. Alternative diagnosis tools are needed.

Over the last decade, photoplethysmography (PPG) has
found widespread clinical and consumer electronic appli-
cations. PPG is an optical measurement technique that re-
quires two opto-electronic components to be placed on the
skin surface: a light source to illuminate the tissue, and
a photodetector to measure small variations in light inten-
sity associated with changes in perfusion of the underlying
tissue [4]. The interaction of light with biological tissue
is complex and includes optical processes such as multiple
scattering, absorption, reflection, transmission and fluores-
cence [5]. PPG signals are especially interesting because
they are made available by low-cost and comfortable sen-
sors. Nowadays, PPG technology is used in many commer-
cial solutions such as pulse oximeters, vascular diagnostic
tools, digital blood pressure measurement systems and in
numerous smartphone applications [6,7].

While more than 10 years of research and development
have been necessary to bring the PPG technology into ac-
tual low-power solutions [8—10], a major question remains
unanswered: is the cardiac activity information provided
by wrist-located PPG sensors accurate enough to substi-
tute ECG-based solutions on the ambulatory screening of
large populations? The aim of this study is to provide first
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experimental data to support this hypothesis.

2. Methods

The clinical study described in this section is compliant
with all relevant Swiss ethics, regulation and institutional
policies, and in accordance with the tenets of the Helsinki
Declaration. Informed consent was obtained from all indi-
viduals before enrolment at Lausanne University Hospital
(CHUV).

2.1. Data

Signals were recorded on twenty patients admitted for
AF or ventricular tachycardia during standard diagnostic
procedures used by the CHUV’s Electrophysiology Labo-
ratory before catheter ablation intervention. For each pa-
tient, 12-lead ECG signals were acquired at 2 kHz by a
commercial electro-physiology system (Siemens Sensis),
and PPG waveforms were acquired by a proprietary wrist-
based device embedding reflective infrared sensors sam-
pled at 21.33 Hz. ECG signals were further analyzed
by clinical experts, providing annotations of sinus rhythm
epochs (SR), regularly paced rhythm epochs, irregularly
paced rhythm epochs, and AF epochs. Regularly and ir-
regularly paced rhythms epochs were excluded from the
analysis.

2.2.  Pre-Processing

Data pre-processing consisted on estimating and align-
ing interbeat intervals when extracted from ECG and PPG
raw signals. Initially, position of heartbeats on ECG sig-
nals was extracted from R-wave detection as directly pro-
vided by the commercial electro-physiology system. The
arrival of a pressure pulse in the small arteries located in
the vicinity of the optical sensor produces an increase of
tissue blood volume that results in an augmentation of the
light absorption, leading to a reduction of the measured
optical signal amplitude (systolic downstroke). Therefore,
position of heartbeats in PPG signals was performed by
detecting the systolic downstroke of each heart-beat wave-
form.

For this study, systolic downstrokes were identified as
the zeros of the PPG signal second derivative, when such
curvature changed from positive to negative values. Ini-
tially, a second order derivative was calculated by apply-
ing a finite impulse response filter to the raw optical signal.
The coefficients of the filter were given by:

dd, = [1/3,1/3,1/3,—2/3 =2/3, ...

—2/3,1/3,1/3 1/3] 0 hanning(9) M

where o is the element-wise multiplication (Hadamard
product) and hanning(9) is a hanning window of 9-

sample length. Then, systolic downstrokes were obtained
by finding the pairs of samples crossing the zero value
of the second order derivative during positive-to-negative
transitions. A linear interpolation was applied between
these sample pairs to increase the temporal resolution.
ECG- and PPG-based interbeat intervals were then com-
puted from the R-waves and systolic downstrokes by tak-
ing the time difference of consecutive events. For each pa-
tient, beat-to-beat alignment of the two series of interbeat
intervals was then performed. Since many non-cardiac fac-
tors such as respiration and body motions corrupt PPG sig-
nals, alignment of both series was performed via a dynamic
time warping algorithm [11]. The aligned series of inter-
beat intervals allowed to relate the two time-bases of the
recording systems. The relation between these two time-
bases was assumed to be modeled by the linear equation

tEC\G = Q- toptical + ﬁ (2

where tEEG is the estimated time in the ECG system time
base corresponding to Z,picqi in the PPG system time base,
« is the relative drift of the PPG system clock relatively
to the ECG system clock and (3 is time offset of the two
recordings.

For this study, the parameters o and 5 of equation 2
were estimated by a regression method. Because of the
noisy nature of the systolic downstrokes determined from
PPG signals, outlier values were removed before the esti-
mation of the parameters of the linear model of equation 2.
A random sample consensus (RANSAC algorithm) [12]
directly rejected such outliers during the estimation pro-
cess. During the estimation of the o and 8 parameters the
residual threshold of the RANSAC algorithm was set to
one second. Finally, equation 2 was used to transform the
time base of the PPG signals to match the time base of the
ECG signals. After this time transformation, synchronous
pairs of interbeat intervals could be compared as described
in the following sections. Expert annotations of rhythm
epochs were automatically projected into the same time
base, leading to one annotation for each interbeat interval.
Figure 1 illustrates typical examples of aligned ECG and
PPG data, as well as calculated RR intervals.

2.3. Feature extraction

The synchronized interbeat time series were segmented
in overlapping time windows of 10 seconds: one 10-
second time window for each detected beat, leading to a
total number of 2213 epochs. For each time series, the fol-
lowing features were calculated at each window:

« feature #1: mean value of the interbeats intervals;

« feature #2: minimum value of the interbeat intervals;

o feature #3: median value of the interbeat intervals; and
o feature #4: interquartile range of the interbeat intervals.
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Figure 1. Illustrative examples of signals acquired during the present study, depicting SR conditions (left panel) and
AF episodes (right panel). A) and B) illustrate raw ECG signal and the time indexes of their corresponding detected R-
waves provided by the electro-physiology monitor. C) and D) illustrate raw PPG signals acquired at the wrist (note the
low-frequency respiration component). E) and F) illustrate the preprocessed PPG signals and the time indexes of their
corresponding detected systolic downstrokes. G) and H) illustrate the associated interbeat intervals estimated from the

ECG (dotted blue lines) and PPG signals (bold red lines).

2.4. Classification

The previously-described feature extraction algorithm
created a set of four ECG-related features and a set of four
PPG-related features for each annotated epoch. These sets
of feature values were used to train a Support Vector Ma-
chine classifier with a linear kernel to separate the AF from
SR feature sets. To avoid overfitting, a leave-one-out pro-
cedure was used to assess the performance of the classifier.

3. Results

Overall performances of the implemented classification
algorithm when applied to ECG and PPG signals are pro-
vided in Table 1. Positive and negative classifier results are
associated to AF and SR, respectively.

Table 1. Classification of AF (positive event) and SR (neg-
ative event) episodes

ECG PPG
True positives 1926 1913
False positives 13 124
False negatives 12 14
True negatives 287 162
Sensitivity 0.9938 | 0.9938
Specificity 0.9600 | 0.5664
Accuracy 0.9893 | 0.9376

4. Discussion

The results of the present study (see additional material
in [13]) constitute to the best of our knowledge a first clin-
ical evidence of reliable AF detection using PPG sensors
at the wrist. The high values of sensitivity (99%) showed
in Table 1 demonstrates the potential of a wrist-located AF
classifier using PPG technology. Unfortunately, by classi-
fying beats individually (without any memory considera-
tion), the classifier was exposed to low level of specificity
(57%): there is thus a large room for improvement on this
direction. Additionally, the training of the classifier on bi-
ased data (number AF beats number SR beats) also af-
fected specificity negatively.

The analysis of the recorded data has pointed at the fact
that the addition of features based on variation of wave-
form morphologies (as presented in [13]) might be neces-
sary to achieve improved algorithm performances: typical
data segments depicted in Figure 1 illustrate this challenge.
We observed that for a large number of AF epochs, patho-
logical PPG waveform morphologies were recorded: see
by instance Figure 1 D) and F). We hypothesize that AF
leads to changes in hemodynamics such as reduced stroke
volume (followed by a reduction in systemic blood pres-
sure) and a pooling of venous blood [14], leading to such
pathological waveform morphology. In addition variations
of PPG waveform amplitudes were observed on numer-
ous episodes during SR as well as during AF. Illustration
of such amplitude variations can be observed in Figure 1
C) around the 10" second and over the entire signal of
Figure 1 F)). This might reflect stroke volume variations
caused by short and long recovery episodes (consecutive



short and long interbeat intervals) combined with the com-
pensation of the sympathetic vasoconstriction due to pe-
ripheral pressure increase. This phenomena is expected
to modulate PPG signals and create the observed low fre-
quency component. However, although missing beats and
false positive PPG detections were observed during AF
episodes (see two missing beats around the 6" and 7 sec-
onds in Figure 1 F) and H)), general trend of the time series
of PPG interbeat intervals were similar to those obtained
from ECG signals (see bold red and dotted blue lines in
Figure 1 G) and H)).

Concerning the overall classification performance, it is
interesting to compare AF versus SR classification perfor-
mances shown in Table 1 to a recently published study,
which compared AF detection performance between per-
manent pacemaker (accuracy of 0.9913) and implantable
cardiac monitors (accuracy of 0.7219) [15]. The detection
of AF in these two devices was also based on features ex-
tracted from time series of interbeat (or RR) intervals.

Based on these preliminary PPG-based wrist-located de-
vices appear to potentially perform similar performances
to implantable cardiac monitors when screening AF. The
advantages of the PPG disruptive technology are numer-
ous: ranging from its non-invasivity and limited cumber-
someness, to its extremely reduced cost. Adding to these
facts the expected high patient acceptance of such a device,
we expect PPG-based wrist-located devices to revolution-
ize the screening of AF in large populations. Nevertheless,
further work is still required to improve achieved perfor-
mances, in particular concerning the PPG preprocessing
during AF, the cardiac beat detection from PPG atypical
waveforms, and the extraction of features from time series
of interbeat intervals [13].
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