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Abstract 

In the present work, we investigated current methods 
for complex fractionated atrial electrogram (CFAE) 
classification during persistent atrial fibrillation 
(persAF). Potential contributing factors concerning the 
low reproducibility of CFAE-guided ablation outcomes in 
persAF therapy have been explored, such as 
inconsistencies in automated CFAE classification 
performed by different systems, the co-existence of 
different types of atrial electrograms (AEGs), and 
insufficient AEG duration for CFAE detection. First, we 
show that CFAE classification may vary for the same 
individual, depending on the system being used and 
settings being applied. Revised thresholds are suggested 
for the indices calculated by each system to minimize the 
differences in CFAE detection performed independently 
by them. Second, our results show that some AEGs are 
affected by stepwise persAF ablation, while others remain 
unaffected by it. Different types of AEGs might correlate 
with distinct underlying persAF mechanisms. Single 
descriptors measured from the AEGs, such as sample 
entropy and dominant frequency, were not able to 
discriminate the different types of AEGs individually, but 
multivariate analysis using multiple descriptors measured 
from the AEGs can effectively discriminate the different 
types of AEGs. Finally, we show that AEG duration of 2.5 
s – as currently used by some systems – might not be 
sufficient to measure CFAEs consistently.  

1. Introduction

Atrial fibrillation (AF) is the most common sustained 
cardiac arrhythmia found in clinical practice, 
characterized by irregular atrial mechanical function, and 
it is a leading cause of stroke [1]. Although pulmonary 
vein isolation (PVI) has been proved effective in treating 
paroxysmal AF, the identification of critical areas for 

successful ablation in patients with persistent AF 
(persAF) remains a challenge due to an incomplete 
understanding of the underlying pathophysiology of the 
arrhythmia [1]. Complex fractionated atrial electrograms 
(CFAEs) are believed to represent remodeled atrial 
substrate and are, therefore, potential targets for persAF 
ablation [2]. CFAE ablation has been accepted as an 
additional therapy to PVI to treat persAF. Inconsistent 
CFAE-guided ablation outcomes have, however, cast 
doubt on the efficacy of this approach [3]. Currently, 
clinical studies rely on automated CFAE classification 
performed by algorithms embedded in commercial 
mapping systems to identify CFAEs during persAF 
ablation. Different companies have developed algorithms 
based on different features of the atrial electrogram 
(AEG). Inconsistencies between these algorithms could 
lead to discordant CFAE classifications by the available 
systems [4]. Additionally, while studies support that some 
CFAEs truly represent local AF drivers, others suggest 
CFAEs are resultant from distant AF drivers [5,6]. 
Finally, the spatio-temporal behavior of AEGs in persAF 
remains contentious [7]. We hypothesized that these 
factors might contribute to disparities in ablation target 
identification based on AEG fractionation in persAF. This 
study investigated factors that directly influence the low 
reproducibility of CFAE-guided ablation outcomes in 
persAF therapy, such as inconsistencies in automated 
CFAE classification, the co-existence of different types of 
AEGs, and insufficient AEG duration for CFAE 
detection. 

2. Materials and methods

The study population consisted of 18 persAF patients 
(16 male; mean age 56.1 ± 9.3 years; history of AF 67.2 ± 
45.6 months) referred to our institution for first time 
catheter ablation [6]. Study approval was obtained from 
the local ethics committee and all procedures were 
performed with full informed consent. 3D left atrial (LA) 
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geometry was created using Ensite NavXTM (St. Jude 
Medical, St. Paul, Minnesota). PVI was performed 
followed by the creation of linear roof lines (PVI+RL) 
using a deflectable, variable loop circular mapping 
catheter (Inquiry Optima, St. Jude Medical). Bipolar 
AEGs were collected from 15 pre-determined atrial 
regions before and after LA ablation for each patient [6]. 
797 AEGs (455 before and 342 after PVI+RL) were 
recorded from the LA (sampling frequency 1.2 kHz) and 
band-pass filtered (30 – 300 Hz). 

2.1. Automated CFAE classification 

The two commercial systems most frequently used in 
clinical practice are the NavX and the CARTO (Biosense 
Webster, Diamond Bar, California) [4]. Those systems 
provide primary indices to assess CFAE objectively 
[NavX: CFE-Mean; CARTO: Interval Confidence Level 
(ICL)], and complementary indices to further support the 
electrophysiology procedure [NavX: CFE-StdDev; 
CARTO: Average Complex Interval (ACI), Shortest 
Complex Interval (SCI)]. There are no defined 
recommended thresholds for the complementary indices 
to characterize CFAEs. To compare both systems, the 797 
AEGs with their respective CFE-Mean and CFE-StdDev 
were exported from NavX. The ICL, ACI and SCI, as 
defined by CARTO, were calculated offline with a 
validated (100% agreement) MATLAB algorithm [4]. 
CFAE classification was performed by NavX and 
CARTO using their default clinical thresholds (CFE-
Mean ≤ 120 ms; ICL ≥ 7) [8]. Primary and 
complementary indices from each system were optimized 
to reduce the differences in CFAE detection between 
them using receiver operating characteristic (ROC) 
curves. The agreement between both systems was 
assessed with Cohen’s kappa (κ) [9]. 

2.2. Different types of AEGs 

From the 797 AEGs, 207 pairs were identified as 
collected from corresponding LA regions: 207 before and 
207 after PVI+RL. Nine descriptors were measured from 
the 207 pairs of AEGs, accordingly: CFE-Mean, CFE-
StdDev, ICL, ACI, SCI [4], sample entropy (SampEn) 
[10], peak-to-peak (PP) [11], dominant frequency (DF) 
[12] and organization index (OI) [13]. Multivariate 
analysis of variance (MANOVA) and linear discriminant 
analysis (LDA) were used to test the differences between 
the AEGs before and after PVI+RL using all descriptors. 
CFAEs were defined as CFE-Mean ≤ 84 ms; ICL ≥ 4. 

2.3. AEG duration for CFAE detection 

Previous work has investigated different segment 
lengths to consistently characterize CFAEs using NavX, 

since this system allows for different AEG duration 
recordings (1 s to 8 s) [7]. CARTO, however inherently 
limits the AEG collection to 2.5 s, hampering the 
investigation of CFAE temporal behavior using this 
system. To overcome this limitation, consecutive 2.5 s 
AEG segments were assessed to infer about temporal 
consistency of AEG. CFAE classifications performed in 
AEGs with different segment lengths have been analyzed 
to search for the ‘optimum’ length of AEGs needed for 
identification of CFAEs. Accordingly, the 797 bipolar 
AEGs were exported from NavX with three segment 
lengths (2.5 s, 5 s and 8 s). The AEGs with 8 s duration 
were divided into three consecutive 2.5 s segments. 
CARTO’s criterion for CFAE classification (ICL, ACI 
and SCI) was applied offline to all cases. 

2.4. Statistical analysis 

Nonparametric paired multiple data were analyzed 
using the Friedman test with Dunn's correction. 
Nonparametric unpaired data were analyzed using the 
Mann–Whitney test. Categorical data were expressed as 
percentages and analyzed using the two-sided Yates-
corrected Chi-square test. P≤0.05 was considered 
statistically significant. 

3. Results

3.1. Automated CFAE classification 

The CFAE classifications performed by NavX and 
CARTO with their respective default thresholds for 
CFAE detection (CFE-Mean ≤ 120 ms, ICL ≥ 7, 
respectively) do not always agree (Figure 1A).  

Initially assuming CFE-Mean ≤ 120 ms as the 
reference for CFAE classification, the default threshold 
for CARTO (ICL ≥ 7) provides high specificity but poor 
sensitivity for CFAE detection (Table 1, Figure 1B). The 
optimum threshold found from the ROC curves (ICL ≥ 4) 
provides optimum sensitivity and specificity for CFAE 
detection and classification when using NavX as the 
comparator. Now, assuming ICL ≥ 7 as the reference for 
CFAE classification, the default threshold for NavX 
(CFE-Mean ≤ 120 ms) provides high sensitivity but poor 
specificity for CFAE detection (Table 1, Figure 1C). 
CFE-Mean ≤ 84 ms provides optimum sensitivity and 
specificity for CFAE detection and classification when 
using CARTO as the comparator. The results from the 
ROC curves suggest that CFE-StdDev ≤ 47 ms, ACI ≤ 82 
ms and SCI ≤ 58 ms provide optimum sensitivity and 
specificity for CFAE detection, when considering the 
agreement between CFE-Mean and ICL for CFAE 
classification (Table 1, ROC curves omitted). Using the 
default thresholds NavX classified 69±5% of the AEGs as 
CFAEs, while CARTO detected 35±5% (P<0.0001). 

 

 

  



Table 1. Threshold optimization for ICL, CFE-Mean, CFE-StdDev, ACI and SCI. 

AUROC = Area under ROC curve. Values in mean (±SD). **** P<0.0001. 

Figure 1: (A) Comparison of CFAE classifications 
performed by CFE-Mean and ICL for all AEGs. ROC 
curves and threshold customization for ICL (B) and CFE-
Mean (C). (D) CFAE maps (LA anterior view) performed 
by NavX (upper) and CARTO (bottom) using their 
default (left) and revised (right) thresholds [4]. 

With the revised thresholds, NavX classified 45±4%, 
while CARTO detected 42±5% (P<0.0001). Kappa score 
between the CFAE categorization performed by NavX 
and CARTO significantly increased (P<0.0001) from 
0.34±0.07 (marginal agreement, P<0.0001) using their 
default thresholds to 0.45±0.10 (good agreement, 
P<0.0001) with the revised thresholds, resulting in more 
similar CFAE maps (Figure 1D). 

3.2. Different types of AEGs 

At baseline, 70% of the AEGs were classified as CFAEs, 
while 40% were classified as CFAEs after PVI+RL 
(P<0.0001). Four groups of AEGs were distinguished in 
terms of the presence of fractionation before and after 
PVI+RL (Figure 2): 45% of the AEGs that were CFAE 
before ablation remained CFAE after ablation (G1), while 
55% converted to non-CFAE (G2); 29% of the non-
CFAE prior to ablation became CFAE (G3), while 71% 
remained non-CFAE (G4). The descriptors showed poor 
correlation with each other (Spearman’s correlation, ρ; 
Figure 3), but were significantly affected by PVI+RL. 
MANOVA suggests a significant main effect of the 
groups of AEGs (1, 2, 3 and 4) on the descriptors on both 
before (F-ratio F = 12, P<0.0001) and after ablation (F = 

17, P<0.0001) datasets. LDA revealed three discriminant 
functions both before and after ablation. Prior to any 
ablation, LDA successfully discriminated 62% of the 
AEGs in group 1; 70% of group 2; 50% of group 3 and; 
64% of group 4. After PVI+RL, LDA improved, 
discriminating 97% of the AEGs in group 1; 83% of 
group 2; 5.6% of group 3 and; 46% of group 4. 

Figure 2: (A) CFAE maps before and after PVI+RL. (B) 
Illustration of the different types of AEGs. 

Figure 3: Correlations between different descriptors 
measured from the same AEG database. 

Classifier Thresholds Sensitivity 1-Specifivity AUROC P-Value 

CFE-Mean ≤ 120 ms ICLDefault ≥ 7 0.492±0.008 0.050±0.005 0.852±0.005 **** ICLRevised ≥ 3.8±0.4 0.777±0.022 0.162±0.022 

ICL ≥ 7 CFE-MeanDefault ≤ 120 ms 0.958±0.005 0.552±0.009 0.755±0.005 ****CFE-MeanRevised ≤ 84.1±0.4 ms 0.807±0.010 0.362±0.006 
CFE-Mean ≤ 84 & ICL ≥ 4 CFE-StdDev ≤ 46.6±0.8 ms 0.905±0.012 0.185±0.008 0.877±0.014 **** 
CFE-Mean ≤ 84 & ICL ≥ 4 ACI ≤ 82.2±0.3 ms 0.827±0.010 0.360±0.009 0.759±0.006 **** 
CFE-Mean ≤ 84 & ICL ≥ 4 SCI ≤ 58.6±0.4 ms 0.816±0.012 0.300±0.009 0.812±0.005 **** 

 

 

  



3.3. AEG duration for CFAE detection 

Three types of AEGs have been identified when 
investigating the consecutive segments with the CARTO 
criteria: ‘stable CFAEs’ as AEGs with ICL ≥ 4 in all 
assessed segments; ‘stable non-CFAEs’ as AEGs with 
ICL < 4 in all assessed segments and; ‘unstable AEG’ as 
AEGs with ICL varying to and from ICL ≥ 4 to ICL < 4. 
A total of 43% AEGs were stable CFAEs, 27% were 
stable non-CFAEs, while nearly 30% were unstable 
AEGs. AEG classification within the consecutive 
segments had moderate correlation (segment 1 vs 2: 
ρ=0.74, κ=0.62; segment 1 vs 3: ρ=0.73; κ=0.62; segment 
2 vs 3: ρ=0.75; κ=0.68), and different AEG segment 
resulted in different CFAE maps (Figure 4A). AEGs with 
5 s generated AEG classification more similar to 8 s 
(ρ=0.96; κ=0.87) than 2.5 s vs 5 s (ρ=0.93; κ=0.84) and 
2.5 s vs 8 s (ρ=0.90; κ=0.78) (Figure 4B). 

Figure 4: CFAE maps for the consecutive AEG segments 
(A) and for the different segment lengths (B). 

4. Discussion and conclusion

Despite many efforts, the current form of CFAE-
guided ablation has failed to provide a definite solution 
for persAF therapy [3]. Differences in existing methods 
for automated atrial substrate identification [4], and 
insufficient understanding of the underlying mechanisms 
involved in AF initiation and perpetuation  [5] are 
contributing factors to inconsistencies in patient-specific 
persAF ablation [4]. Indeed not all AEG fractionation 
might represent AF drivers, but some fractionated AEGs 
are surrogates of critical sites for AF maintenance, and 
better characterization of these may result in better 
outcomes in persAF ablation. CFAE-guided ablation is, 
and for now will continue to be, an important procedure 
in the treatment of AF. However, a thorough re-
evaluation of the definition of CFAE is necessary in order 
to refine the identification of atrial regions responsible for 
the perpetuation of persAF. 
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