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Abstract

Locating the atrial fibrillation (AF) sources is a relevant
and not fully analyzed problem.

We propose a procedure to benchmark methods for
driver location in AF and compared three representa-
tive techniques: zero-order Tikhonov, Greensite and Bayes
(maximum a posteriori). These methods were used to es-
timate the epicardial potentials, in turn used to locate the
driver, using a realistic computer model for atria and torso
with two simulated AF propagation patterns.

The assessment is based on the spatial mass function
of the driver location (SMF), i.e. the probability of the
driver being at each point of the atria. Being the driver
region (DR) the points with SMF > 0, we defined three
metrics: (i) weighted under-estimation indicator, which is
the weighted percentage of the true DR that is not detected
out of the entire true DR; (ii) the weighted over-estimation
indicator, which is the percentage of the misjudged DR out
of the entire estimated DR; and (iii) the correlation coeffi-
cient between real and estimated SMFs.

Results show that the these metrics are easy to compute
and provide representative information about the location
accuracy. Among the compared algorithms, Bayes method
provided the best performance in both AF patterns.

Remarkably, even for the most complex pattern, for
which epicardial potentials estimation was inaccurate, the
three methods approximately located the activity driver.

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia
in clinical practice and it is associated with an increased
risk of embolism, cardiac failure and mortality [1]. Re-
cently, some works have focused on techniques for locat-
ing AF drivers [2–4] since the isolation of AF sources (by
ablation) has been reported to be an effective approach in

restoring sinus rhythm [5, 6].
Among the proposed techniques, electrocardiographic

imaging (ECGI) aims to non-invasively reconstruct the
electrophysiological activity on the heart surface from
body surface potentials (BSP) [7]. The ECGI is an ill-
posed problem so regularization methods must be applied
to obtain stable and realistic solutions [8]. However, the
ECGI has not been fully validated for AF driver location.
In this work, we propose an assessment procedure based
on three performance metrics and apply it to three repre-
sentative regularization techniques.

The remaining of the paper is organized as follows. In
Section 2.1 we present the computational model used for
the study, the regularization techniques and the perfor-
mance metrics. Results are described in Section 3 and Sec-
tion 4 summarizes the main conclusions.

2. Methods

2.1. Computational models

We use realistic computational models of atria (2039
nodes) and torso (659 nodes), and simulate different prop-
agation patterns over the atrial surface and the associated
BSP [9, 10]. Two propagation patterns were considered,
namely, (i) simple AF propagation pattern (SAF), repre-
sented by a right-to-left dominant frequency (DF) gradient
with a reentry located in the right atria, at 7.3Hz (the rest
of the atrial tissue is activated at 4.7Hz); and (ii) complex
AF propagation pattern (CAF), with 25% of atrial cells un-
der fibrotic conditions [4], and a single functional reentry
simulated near the RSPV at 6.8Hz, while the rest of the
atria activates at 5.4Hz. BSP were calculated by using
the boundary element method [11], referenced to the Wil-
son Terminal Center and corrupted with additive Gaussian
noise with a signal to noise ratio SNR = 20 dB.
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2.2. Inverse techniques for driver location

To estimate the driver location we proceed as follows:
first we calculate epicardial potentials by using different
regularization approaches. Then, based on the inverse-
calculated epicardial potential we estimate the phase maps,
and from these we compute the location of the driver.

For the first step, we assume the following linear model
yt = Axt + ε where ε represents the model residuals.
The target is to estimate the epicardial potentials xt at
time instant t, from measurements at the torso yt with
the knowledge of A. This problem is ill-conditioned and
hence a plethora of regularization methods have been pro-
posed to solve it. We next summarize the ones that are
considered in this work.

Tikhonov regularization (Tik). For obtaining the epi-
cardial potentials xt at instant t, the functional to minimize
is:

||yt −Axt||22 + λt ||xt||22 (1)

where yt is the vector containing the torso measurements
at instant t and λt is the regularization parameter for that
time instant, which is computed a priori by using the L-
curve method. The solution of this problem is:

x̂t =
(
ATA+ λt I

)−1
ATyt (2)

Bayesian maximum a posteriori estimation (Bayes).
In this method, the spatial covariance matrix of the epicar-
dial potentials can be included as a priori information by
making use of the Bayesian MAP estimator [12]. Assum-
ing zero mean for the epicardial potentials, the solution is:

x̂t =
(

CxA
T
)(
ACxA

T +Cn

)−1
yt (3)

whereCn is the covariance matrix (diagonal) of the noise,
which is assumed i.i.d with constant variance, and Cx is
the covariance matrix of the epicardial potentials, which is
estimated from epicardial potentials taken from a different
temporal window than that used for the test.

Greensite (GS). Temporal correlation can also be in-
cluded in the problem by using the isotropy assumption
[13]. Then, the spatio-temporal covariance matrix can be
computed as CX = Ct ⊗ Cx, where Cx is the spatial co-
variance matrix and Ct is the temporal covariance matrix.
This covariance matrix is large, so a whitening filter can be
applied to the data, and the problem is then solved instant
by instant with the MAP approach [14, 15].

The second step of the procedure consists on comput-
ing the phase maps by using a Hilbert transform applied
to the signal in each node. Signals have been previously
filtered with a band-pass filter around the dominant fre-
quency (passband from 3 Hz to DF + 2 Hz), which was
computed as in [3]. Finally, the phase maps are used to de-
tect the core of reentrant activity [3, 6]. A driver is defined

(a)SAF propagation pattern

(b)CAF propagation pattern

Figure 1. Real and estimated phase maps with Tik, GS
and Bayes, (a) SAF and (b) CAF models.

as the point in a phase map that was surrounded by phases
from 0 to 2π present at least two full rotations [4]. Finally,
dominant driver is defined as the one located in the highest
dominant frequency area.

2.3. Performance metrics

To compute the performance metrics, the estimated
driver location was compared with a gold standard, which
was the location of the driver computed from the real epi-
cardial potentials. We propose to estimate the probabil-
ity of the driver being at each location during an obser-
vation time window [16]. First, we estimated the driver
location for each instant and built a spatial histogram that
represented the number of times the driver was observed
at each node. This histogram was normalized to obtain a
spatial mass function (SMF) of the driver location, p(n),
with n ∈ {1, . . . , N} the node index. Second, defining the
driver region (DR) as the region where the SMF is non-
zero, we compared the real and estimated SMFs (p(n) and
p̂(n)) using three metrics:
• The weighted under-estimation indicator (WUI), defined
as the weighted percentage of the true DR that is not de-
tected out of the entire true DR. Our estimate is probabilis-
tic, so we weight the areaAn associated with the n-th node
with the probability of locating the driver in that node, i.e.
with p(n). The area associated with one node is the area of
the faces surrounding the node. Hence, the WUI indicator
is computed as:

WUI(%) = 100

∑
n∈FN

p(n)An∑
n∈FN

p(n)An +
∑

n∈TP

p(n)An
(4)

where FN (False Negative) is the set of nodes belonging
to the true DR but not to the estimated DR, TP (True Posi-
tive) is the set of nodes in both the true and estimated DRs.
• The weighted over-estimation indicator (WOI), defined
as the percentage of the misjudged DR out of the estimated

 

 

  



Table 1. Driver location performance for SAF and CAF models for SNR=20: WUI, WOI and CCSMF .
SAF CAF

WUI WOI CCSMF WUI WOI CCSMF

Tik 46.33 22.48 0.52 6.65 66.51 0.24
Bayes 20.68 6.53 0.78 2.64 9.29 0.99
GS 48.12 20.94 0.47 6.75 65.22 0.46

(a)SAF propagation pattern

(b)CAF propagation pattern

Figure 2. Real and estimated SP location with Tik, GS and Bayes, for (a) SAF and (b) CAF models.

DR, with the same weightings described for the WUI:

WOI(%) = 100

∑
n∈FP

p̂(n)An∑
n∈FP

p̂(n)An +
∑

n∈TP

p̂(n)An
(5)

where FP (False Positive) is the set of nodes belonging to
the estimated DR but not to the true DR.
• The correlation coefficient between SMFs (CCSMF )
that summarizes location accuracy in one parameter.

The first two metrics are weighted versions of those pre-
sented in [17], which are used for ischemia region detec-
tion.

3. Results

Figure 1 shows the phase maps. In all the cases the
Bayes method clearly outperformed the others. Recall that
this method used a priori information taken from real epi-
cardial potentials. In all the cases a singularity point was
observed where the re-entrant activity was placed.

Figure 2 shows the real and estimated SMF of the driver
location. For the SAF model the driver was placed in the
right atrium, and moved over a wide region (white areas in
Fig 2(a)). All methods were are able to locate the driver
most of the time (red areas). For the CAF model the driver
locations estimated with Tikhonov and GS methods were
more spread out than in the Bayes case, however with very
high probability at the right place.

Table 1 shows the WUI, WOI and CCSMF metrics.
Bayes and Tik methods performed well in terms of the
three metrics for the SAF model (WUI between 20% and
47%, WOI between 6.53% and 34%, CCSMF between
0.52 and 0.78). The results varied significantly for the CAF
model. While Bayes method still provided good results,
Tik method overestimated the DR. Note that the true DR
was small in the CAF case, so moderate errors in the lo-
cation led to high variations in the error metrics. Finally,
CCSMF summarized well location accuracy and tended to
zero for high values of WUI and/or WOI.

 

 

  



4. Discussion and conclusions

The SMF of the driver location aggregates the results
of the location procedure in a time-scale of a few seconds,
rather than providing a useless instantaneous measurement
of the location accuracy. It is also a probabilistic represen-
tation of the location of the driver, so it would be easy to
interpret and rather useful in a clinical environment.

The WOI and WUI assess the accuracy of the estimated
SMF. They take into account the irregularities of the atria
surface by weighting the presence of a driver at one loca-
tion with the area surrounding the specific node. Also, it
takes into account that the driver is not static, and that it is
observed in each place a variable number of instants. By
comparing the numerical results with the SMF plots, we
observed that the WOI and WUI consistently evaluated the
similarities between real and estimated SMFs. Finally, the
CCSMF summarized the WOI and WUI, since it took a
low value when the WOI or the WUI are not high.

Regarding the compared techniques, the Bayes method
clearly outperformed the others, due to the use of a priori
information. The GS method did not improve the Tik re-
sults. Finally, although not shown here, the estimation of
the epicardial potentials for the three methods were less re-
liable than the estimation of the phase maps and the driver
location. Since driver location is more useful in the clinical
practice than raw epicardial potentials, this is a promising
result supporting those obtained in [2, 10].
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