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Abstract

This study aimed to develop a new probabilistic visual-
ization analysis to study source localization uncertainty in
electrocardiographic imaging (ECGI). Using Monte Carlo
error propagation, we developed probability maps that il-
lustrate uncertainty in source localization compared to the
ground truth source location. We used these probability
maps to quantify the impact of noise amplitude and iter-
ative Krylov regularization on source localization. Artifi-
cial Gaussian white noise was added to the body surface
potentials between (0.5% and 9% of their amplitudes) to
simulate noisy observations. We solved the inverse prob-
lem to recover heart surface potentials using the conju-
gate gradient least squares (CGLS) and preconditioned
CGLS (PCGLS) algorithms with the Laplacian over the
heart surface as a right preconditioner. We forward prop-
agated these inverse solutions, and performed 200 CGLS
and PCGLS Monte Carlo inversions per noise level. For
each sample, we recorded the top 1% of lowest potential
locations, and normalized across all samples to form em-
pirical probability maps for source localization. Increas-
ing the noise amplitude increased both the uncertainty and
inaccuracy for source localization, with PCGLS outper-
forming CGLS across all noise amplitudes. We conclude
that the concept of a source localization probability map
may be useful clinically in identifying origins of arrhyth-
mia in cardiac tissue.

Keywords— electrocardiographic imaging (ECGI), Krylov inver-
sion, Monte Carlo sampling, uncertainty quantification

1. Introduction

Cardiac ablation is an interventional procedure in which
a clinician internally locates and destroys regions of car-
diac tissue responsible for spontaneous pathological heart
beats or reentrant wave activity. However, this invasive
therapy can last many hours, and abnormal heart rhythms,
or arrhythmias, frequently re-occur following the proce-
dure [1, 2]. One noninvasive approach to reducing proce-
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dure times and the risk of recurrence is known as electro-
cardiographic imaging (ECGI). ECGI uses a patient’s CT
and MRI images to approximate a computational geome-
try, and combines this with ECG recordings into a mathe-
matical model that predicts the origin of an arrhythmia.

This inverse problem of electrocardiography may one
day become a standard in ablation procedures, allowing
clinicians to more quickly and accurately locate patholog-
ical heart tissue, since the ECGI prediction for the source
of an arrhythmia essentially tells a clinician ahead of time
where to ablate [3]. ECGI involves solving Laplace’s equa-
tion [4, 5] to obtain the system

Ah = y (1)

where A ∈ Rm×n, h ∈ Rn, and y ∈ Rm. The transfer
matrix A relates the heart surface voltages h to the true
body surface voltages y∗. However, the observed body
surface ECG recordings y are a combination of the true
signal y∗ and noise e. In this study, Equation 1 is an un-
derdetermined system (with m = 589 and n = 2206),
and A is severely ill-conditioned. Consequently, solutions
to Equation 1 are both ill-posed and non-unique, making
the inversion highly sensitive to sources of error in a lim-
ited number of torso measurements. Unfortunately bio-
electric simulations are sensitive to sources of error [6–9],
and there is a lack of quantitative understanding on how
noise errors and regularization impact source localization.
In this study, we develop probability maps to visualize the
impact of noise errors and iterative regularization on the
inversion and source localization.

2. Methods

In Equation 1, we added artificial, identical and indepen-
dently distributed Gaussian white noise e with zero mean
to the set of true simulated body surface recordings y∗, e ∼
N (0, σI), where σ is the standard deviation of the noise,
and I is the identity matrix. Noise was added such that
p = 100‖e‖2

‖t∗‖2 , where p represents the percent added noise.
In this study, we varied p from 0.5% to 9%. We obtained a
solution to Equation 1 using the truncated conjugate gradi-
ent least squares method (CGLS) [10–12], with the Moro-
zov discrepancy principle as a stopping criteria [13]. This
method applies a series of matrix-vector multiplications
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such that the kth CGLS solution lies in the Krylov sub-
space spanned by hk ∈ {ATy, . . . , (ATA)k−1ATy} [10].
This form of regularization causes h to converge in the di-
rections of the largest singular values of A [10]. In this
study, we also solved Equation 1 using the right precondi-
tioned CGLS (PCGLS) algorithm, using the Laplacian op-
erator L over the heart surface as the right preconditioner.
The matrix L was formed as described in [14]. Because
L has a non-trivial null-space W , the PCGLS method re-
quires formation of the A-weighted psuedo-inverse of L
[10], L# = (I − W (AW )†A)L†, where I is the iden-
tity matrix. With Ā = AL# and ȳ = y − AW (AW )†y,
we solved Āz = ȳ for zk using the CGLS routine, and ob-
tained the PCGLS solution with hk = L#zk+W (AW )†y
[10].

Once we obtained an initial solution hk using CGLS or
PCGLS, we forward-propagated the solution to form an
assumed noise-free right hand side, ỹ = Ahk to perform
Monte Carlo error analysis as described in [11]. In obtain-
ing a Monte Carlo solution, we sampled a noisy solution
ys ∼ N (ỹ, σI), and used the CGLS or PCGLS routines to
form an iterative solution hk,s as we did originally in solv-
ing Equation 1. We obtained an ensemble of 200 Monte
Carlo samples per simulation. To form a probability map,
we located the top 1% of lowest voltages (with the lowest
voltage denoting the source), and averaged these locations
over the 200 samples to form a probabilistic representation
for source localization.

3. Results

Figure 1 shows the ground truth heart voltages, the
original CGLS and PCGLS solutions, and corresponding
Monte Carlo samples for the two algorithms with the noise
percent p at 3%. Red dots mark the location of the absolute
minimum voltage relative to the ground truth data (the true
source origin, which is at the same position on all plots)
and white dots mark the estimated locations for each of
the estimates. While the CGLS solution and correspond-
ing sample show jagged contour lines, the PCGLS solu-
tion and corresponding sample maintain smooth contour
lines around the area of the estimated source location. De-
spite these differences in contour lines representing poten-
tial gradients, each of the inverse solutions and their corre-
sponding samples maintain estimated source locations that
are within 6 mm of the ground truth source location. How-
ever, to better understand similarities and differences be-
tween the CGLS and PCGLS estimations, it is necessary
to look at the individual Krylov vectors that make up each
solution.

True

CGLS Sample

PCGLS Sample
Figure 1. The ground truth solution shows a pronounced
minimum marked as a red dot. The initial CGLS solution
and Monte Carlo sample show less pronounced minimums
(white dots) with non-smooth contour lines. In contrast,
the PCGLS solution and its corresponding sample show
very smooth contour lines emanating from the source.

Figure 2 shows a selection of Krylov vectors obtained
in forming the CGLS and PCGLS solutions in Figure 1.
The top row shows the Krylov vectors corresponding to
the CGLS solution, and the bottom row shows the Krylov
vectors corresponding to the PCGLS solution. Laplacian
preconditioning helps guide the solution iterates through a
Krylov subspace with smoother contour lines compared to
the CGLS solution. These differences in Krylov regular-
ization affect uncertainty in responses to noise errors.

For example, Figure 3 shows probability maps for the
CGLS (top row) and PCGLS (bottom row) algorithms in
response to ECG noise amplitude relative to the ground
truth source location (red dot). Darker green areas in-
dicated regions of higher source localization probability
compared with lighter green ares. While the CGLS proba-
bility maps tended to disperse into several high probability
regions, the PCGLS probability maps aggregated around
a single region. At 0.5%, both algorithms produced high
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Figure 2. Selection of Krylov vector iterates for CGLS algorithm (top row) and PCGLS algorithm (bottom row). All
vectors were normalized to the scale (-1,1).
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Figure 3. Probability maps for source localization illustrate uncertainty as a function of noise in ECG observations for the
CGLS inversion (top row) and PCGLS inversion using a Laplacian preconditioner (bottom row). Dots mark the ground
truth source location.

 

 

  



probability density around the true source. However, at
around 7.0% noise, the high probability region for the
CGLS probability maps tended to disperse. In contrast, the
PCGLS algorithm maintained a high probability density
around the ground truth source. At around 9.0% noise, the
PCGLS algorithm showed a false probability region away
from the true source.

While the PCGLS algorithm may help improve source
localization accuracy, this algorithm requires more matrix-
vector multiplications than the CGLS algorithm. Figure 4
shows the absolute error histories (with absolute error de-
fined as ‖h

∗−hk‖2
‖h∗‖2 relative to the true solution h∗) for the

CGLS and PCLGS algorithms, and illustrates a trade-off
between computational cost and accuracy for these two al-
gorithms. While the PCGLS algorithm tended to converge
in a Krylov subspace with less error than the CGLS algo-
rithm, it requires more iterations to reach termination with
the Morozov discrepancy principle. In this example with
p = 3%, the CGLS algorithm terminated at k = 16 (with
the best possible solution at k = 25), and the PCGLS algo-
rithm terminated at k = 20 (with the best possible solution
at k = 35).

Figure 4. Absolute error histories for CGLS and PCGLS.

4. Conclusion

We conclude that the concept of a source localization
probability map may be useful clinically in identifying ori-
gins of arrhythmia in cardiac tissue. In this study, proba-
bility maps illustrated that increasing the noise amplitude
increased both the uncertainty and inaccuracy for source
localization, with PCGLS outperforming CGLS across all
noise amplitudes. Future studies will develop confidence
intervals to complement the probability maps, and also ex-
plore other sources of uncertainty in electrocardiographic
imaging (ECGI).

Acknowledgments
This project was supported by a grant from the NIH
National Institute of General Medical Sciences (P41
GM103545-18). The authors would like to give a special
thanks to Professor MacLeod for generously sharing data.
References

[1] Arya A, et al. Long-term results and the predictors of out-
come of catheter ablation of atrial fibrillation using steer-
able sheath catheter navigation after single procedure in 674
patients. Eurosp 2010;2:173–180.

[2] O’Donnell D, Furniss SS, Dunuwille A, Bourke JP. Delayed
cure rate despite early recurrence after pulmonary vein iso-
lation for atrial fibrillation. Am Jour of Cardiol 2003;91:83–
85.

[3] Rudy Y. Noninvasive electrocardiographic imaging of
arrhythmogenic substrates in humans. Circ Res 2013;
112:863–874.

[4] Wang D, Kirby R, Johnson C. Resolution strategies for the
finite element based solution of the electrocardiographic in-
verse problem. IEEE Transactions on Biomedical Engineer-
ing 2011;57(2):220–237.

[5] Wang D, Kirby R, Johnson C. Finite-element-based dis-
cretization and regularization strategies for 3-d inverse elec-
trocardiography. IEEE Transactions on Biomedical Engi-
neering 2011;58(6):1827–1838.

[6] Burton B, et al. Uncertainty visualization in forward and
inverse cardiac models. In Computing in Cardiology Con-
ference. IEEE Press, 2013; 57–60.

[7] Erem B, van Dam P, Brooks D. Identifying model innaccu-
racies and solution uncertainties in noninvasive activation-
based imaging of cardiac excitation using convex relax-
ation. IEEE Transactions on Medical Imaging 2014;
33:902–912.

[8] Rosen P, Burton B, Potter K, Johnson C. muView: A vi-
sual analysis system for exploring uncertainty in myocar-
dial ischemia simulations. Visualization in Medicine and
Life Sciences III 2014;49–69.

[9] France J, Gur Y, Kirby RM, Johnson C. A Bayesian ap-
proach to quantifying uncertainty in Tikhonov solutions for
the inverse problem of electrocardiography. In Computing
in Cardiology. 2014; 529–532.

[10] Hansen P. Discrete Inverse Problems Insight and Algo-
rithms. Philadelphia: Society for Industrial and Applied
Mathematics, 2010.

[11] Aster R, Borchers B, Thurber C. Parameter Estimation and
Inverse Problems. 2nd edition edition. Boston: Elsevier In-
corporated, 2013.

[12] Calvetti D. Preconditioned iterative methods for linear dis-
crete ill-posed problems from a Bayesian inversion perspec-
tive. Journal of Computational and Applied Mathematics
2007;198:378–395.

[13] Morozov V. Methods for solving incorrectly posed prob-
lems. New York: Springer-Verlag, 1984.

[14] Huiskamp G, van Oosterom A. The depolarization se-
quence of the human heart surface computed from mea-
sured body surface potentials. IEEE Transactions on
Biomedical Engineering 1988;35:1047–1058.

 

 

  


	204-148



