
Extraction and Analysis of Short-Time Excursions in RR-interval Time Series 

Jean-Marc Vesin1, Sasan Yazdani1, Leila Mirmohamadsadeghi1, Nicolas Bourdillon2 

1Swiss Federal Institute of Technology, Lausanne, Switzerland  
2Institute of Sport Science (ISSUL), Lausanne University, Lausanne, Switzerland 

Abstract 

RR-interval time series often present impulses 
corresponding to short-duration increases or 
decreases in the heart rate, most probably due to 
bursts in autonomic activity. The time-domain 
heartrate variability index pNN50 is obviously linked 
to these spikes. As linear filtering is not appropriate 
for the extraction of these spikes, we developed a 
nonlinear algorithm for this task. In this study we 
demonstrate the potential of this approach to assess 
caffeine-induced changes in the autonomic tone, 
and discuss the potential of this approach. 

1. Introduction

Even after correcting for possible ectopic beats [1], 
observation of RR-interval (RRI) time series often reveals 
the presence of downward and upward impulses 
corresponding to short-term increases and decreases in 
the heart rate. Downward and upward impulses are 
predominantly present when the subject is respectively in 
a supine or standing position. In Figure 1 an RRI signal 
(regularly resampled at 4 Hz) from a healthy subject lying 
for the first 360 s and then standing up is displayed. The 
impulses as well as their inversion in polarity are clearly 
visible (two of them highlighted by the red impulses). 
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Figure 1. RRI from a healthy subject. Change from 
supine to standing at time 360 s. Two impulses are 
highlighted by the red ellipses. 

This phenomenon can be observed in several studies 
published in the field of heart rate variability (HRV), 
figure 5, p. 361 of the classical reference [2] is an 
example. Yet, those impulses have rarely (never?) been 
the main focus of previous studies. Actually, several 
HRV parameters proposed in the relevant literature are 
more or less directly connected to these impulses. The 
most classical one [3] is the pNNx, i.e. the mean number 
of times per hour that successive RRI differ by more than 
x ms, the most common value being x = 50. Also, the SD1 
parameter corresponding to the minor axis of the ellipse 
fitted to the Poincaré plot of an RRI time series measures 
the short-term variability of the latter [4]. An extension of 
this approach, the complex correlation measure (CCM) 
aims at quantifying the point-to-point variation of the RRI 
rather than the global short-term variability [5]. 

However, direct extraction of these impulses is a 
difficult problem due to their limited time extent and 
asymmetry, and due to respiratory sinus arrhythmia 
(RSA). In [6], an encoding of RRI using a bank of 
optimized linear filters was proposed, with short filters 
corresponding to fast regulation mechanisms. These 
filters being bandpass ones, only short-term oscillations 
can be retrieved. The same problem arises with the 
nonlinear approach described in [7], which proposes a 
sparse joint decomposition on a pair of wavelet bases 
with high and low Q-factors. Again, only short- and long-
term oscillations can be separated. Extraction of 
asymmetric impulses is not possible using these methods. 

Hence we propose in this paper to use a simple 
nonlinear scheme initially designed to enhance fast 
change, such as QRS complexes in an electrocardiogram 
signal [8]. We first present this scheme and its adaptation 
to the problem at hand. Next we illustrate on a small 
database how the extracted impulse signals can be used to 
assess drug-induced changes in autonomic activity. 

2. Method

2.1. Principle of the extraction method 

The principle of the so called relative-energy (RE) 
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algorithm [8] is quite simple. Since an impulse is 
characterized by a local surge in signal energy, the idea is 
to measure the ratio between a short-term variance 
estimate and a long-term variance estimate on a sample-
by-sample basis. The larger this ratio is, the more 
impulsive the local signal is. Quite naturally, the short-
term and long-term variances are estimated respectively 
on two windows with odd lengths 2S+1 and 2L+1, with L 
>> S centred on successive signal samples. The resulting 
RE and the original signal are then multiplied sample-by-
sample to yield an impulse-enhanced signal. 

This approach does not conserve amplitudes, i.e. the 
extracted impulses are known only up to a multiplicative 
coefficient. While not relevant in a detection context, this 
raises issues if impulse extraction is sought for. An 
empirical solution consists in scaling the resulting 
impulse signal so that, when subtracted from the original 
signal, the resulting signal has minimum skewness, i.e., 
the asymmetry induced by the impulses is minimized. 

Also, extraction is improved by applying the RE 
scheme in additional iterations (by experience two 
iterations is usually enough) to the successive impulse 
signals, in order to remove spurious impulses. Of course 
skewness minimization should still be performed using 
the original signal. 

Figure 2 presents an example on a 2000-sample signal 
generated as follows: a sinusoid with normalized 
frequency 0.05 was created, and for five half-periods the 
amplitude was multiplied by a factor of two or three. This 
signal presents some similarity with an RRI one, as the 
sinusoid corresponds to an RSA at a breathing frequency 
of 0.2 Hz for a standard sampling frequency of 4 Hz, and 
the impulses are similar to those in figure 1. The lengths 
of the short and long windows were 2S+1=7 and 
2L+1=61samples. Figure 2, from top to bottom, displays 
the original signal, the true impulse signal (original signal 
minus sinusoid), the first estimated impulse signal, and 
the estimated impulse signal after two iterations. The 
error-to-signal variance ratio between the true impulse 
signal and the estimated one is 0.027. The relative 
amplitude errors for the smaller impulses are about 0.001, 
but they amount to 0.09 for the two largest impulses. 

2.2. Adaptation to RRI signals 

The RE extraction scheme can of course be applied on 
the raw RRI time series. In order to make time and 
frequency interpretations possible, we decided to perform 
this analysis on cubic-spline regularly-resampled RRI 
signals using the standard 4 Hz sampling frequency. 

Components present in most RRIs, and that would 
obviously impair the performance of the RE scheme, are 
the positive mean value and ultra-low frequency (ULF, 
<0.01 Hz) activity.  To remove them we use singular 
spectrum analysis (SSA) [9] with a window length of 80. 
The SSA component with the smallest frequency 

(containing both the mean value and the ULF) is 
subtracted from the signal.  Figure 3 illustrates the 
impulse extraction process on a recording from a healthy 
subject in supine position. The top graph displays the raw 
regularly-resampled RRI signal. The middle graph 
displays the RRI signal after mean/ULF subtraction. The 
bottom graph displays the extracted impulse signal, two 
RE iterations, window lengths 2S+1=7 and 2L+1=61. The 
impulses are obviously mainly negative ones, which is, as 
mentioned in the Introduction, a common feature for 
RRIs in the supine position. 
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 Figure 2. (a) Original signal. (b) True impulse signal. (c) 
Estimated impulse signal, first iteration. (d) Estimated 
impulse signal, second iteration. 
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Figure 3. (a) Original RRI. (b) RRI after subtraction of 
mean/ULF. (c) Estimated impulse signal, two iterations.  

 

 

  



3. Materials

Data were recorded from 15 young healthy subjects. 
The protocol followed the Declaration of Helsinki and 
was approved by the Ethical Committee of Lausanne 
University. All participants provided oral and written 
informed consent prior to participation. 

Airflow was monitored breath-by-breath 
(Medgraphics, CPX, St. Paul, MN, USA) at the mouth 
(Pitot tube). 3-lead ECG was monitored using an 
analogue amplifier. The ECG and airflow were acquired 
simultaneously at 1000 Hz, using an analogue-to-digital 
converter (PowerLab 16/30, ADInstruments, Bella Vista, 
Australia) and recorded with commercially available 
software (LabChart v.7.2 ADInstruments, Bella Vista, 
Australia). The participants were asked to abstain from 
caffeine, heavy exercise and alcohol for 12h. The subjects 
underwent recording first in control condition and then 
under the influence of caffeine (6 mg/kg) administrated 
by pills. Each recording session consisted of 10 minutes 
spontaneous breathing (SB), 10 minutes breathing at 9 
breaths-per-minute (brpm) and 10 minutes breathing at 12 
brpm in a randomized order. To ensure correct cadence of 
breathing, the subjects were instructed to follow 
continuously a metronome at 9 and 12 brpm. Baseline 
recordings were performed in all three breathing modes 
before the subjects ingested the caffeine. Caffeine 
recordings started 45 minutes after the ingestion. RR-
intervals were extracted from the ECG and regularly 
resampled at 4 Hz after compensation of ectopic beats.  

4. Results

 The impulse signals were extracted from all the RRI 
ones, with two RE iterations and window lengths 2S+1=7 
and 2L+1=61samples. We characterized the asymmetry in 
the impulse signals by their mean. For comparison 
purposes, we computed the power in the LF band (0.04 – 
0.15 Hz), its version normalized by the total power nLF, 
and the ratio LF/HF between the power in the LF band 
and that in the HF band (0.15 – 0.4 Hz). As caffeine 
elicits a sympathetic reaction, one should expect a 
decrease in the mean of impulse signals (i.e. more 
negative impulses), and an increase in LF, nLF, and 
LF/HF, from baseline to caffeine conditions. In Table 1, 
the numbers of subjects out of 15 for whom the impulse 
mean decreased, and the LF, nLF, LF/HF increased, are 
listed for the three respiration modes. One can observe 
that the impulse mean decreases in most subjects, 
especially in the spontaneous breathing mode, while 
increases in the LF-related values are far less 
predominant. The somewhat paradoxical LF/HF decrease 
in 14 subjects for the respiration rate of 9 brpm may be 
explained by the fact that this rate corresponds to a 
frequency of 0.15 Hz, i.e. the upper and lower bound 

respectively for the LF and HF bands. The RSA at the 
same frequency has a major (and in this case negative) 
impact on the LF/HF ratio. Table 2 displays the 
asymptotic p-values for the two-sample Kolmogorov-
Smirnov test, that confirm the significant (marginally at 
12 brpm) changes in impulse mean induced by caffeine. 

Table 1. Number of subjects out of 15 with a change from 
baseline to condition coherent with caffeine-induced 
sympathetic activation. 

respiration SB 9 brpm 12 
brpm 

Imp. mean 14 12 11 
LF 9 8 7 

nLF 7 8 4 
LF/HF 9 1 7 

Table 2. Asymptotic p-values for the two-sample 
Kolmogorov-Smirnov test between baseline and caffeine 
condition. 

respiration SB 9 brpm 12 
brpm 

Imp. mean 0.001 0.017 0.31 
LF 0.89 0.99 0.89 

nLF 0.89 0.59 0.89 
LF/HF 0.89 0.052 0.99 

5. Discussion

In this paper we intend to draw the attention of the 
HRV community on the impulses that can be often 
observed in RRI signals. We propose an empirical 
method, the nonlinear nature of which makes 
approximate impulse extraction possible. There is interest 
in elucidating the origin of these impulses, but this 
requires obviously microneurographic recordings of 
sympathetic and vagal activities. Let us only mention 
that, in most RRI signals in our study, the average time 
interval between large negative (due to supine position) 
impulses was between 40 and 50 seconds. 

In terms of applications, extraction of the impulse 
signal presents interesting aspects that have been 
illustrated in our experiments. Specifically, although 
these impulses represent but a small fraction of the total 
HRV power, they seem to be representative of the 
sympatho-vagal balance, and are have the advantage to be 
insensitive to RSA fluctuations and independent of the LF 
and HF bands. In the present study, we used only a very 
simple parameter, namely impulse signal mean value, but 
more elaborate measures can be used, for instance by 

 

 

  



processing positive and negative impulses separately. 
A salient point in our experiments is the poor 

sensitivity of frequency-based HRV parameters to 
caffeine-based sympathetic activation, especially at a 
respiration rate of 9 brpm. These parameters are widely 
used in bio-psychological works, in stress assessment for 
instance [10]. However, a factor that is often overlooked 
is respiration. Of course in most subjects the average 
respiration (and thus RSA) frequency is above 0.15 Hz, 
but it may intermittently cross this boundary. Also, 
especially in supine position, subjects such a athletes may 
have a respiration frequency below 0.15 Hz. Impulse 
extraction, that is not influenced by respiration, does not 
present this problem. 

Subtracting the extracted impulse signal from the 
original RRI one may also be useful prior to bandpass 
filtering of the latter. Indeed, the impulses may 
contaminate the filter output due to their wideband nature. 
Figure 4 illustrates this point. The upper plot is an RRI 
signal regularly resampled at 4 Hz, acquired from a 
normal subject in supine position with an imposed 
respiration frequency of 0.225 Hz. A zero-phase bandpass 
filter centred on this frequency was used to extract the 
RSA, both on the raw RRI signal and after impulse signal 
subtraction. The bottom plot shows the instantaneous 
frequency (IF) estimates of the two RSAs obtained 
through the Hilbert transform (HT). The thin and thick 
lines are the RSA IF estimates respectively without and 
with impulse subtraction. As is well known, the HT-based 
instantaneous frequency estimation gives sensible results 
for narrowband signals only. Visibly, the IF estimate for 
the original RRI signal contains aberrant values, 
especially around times 25 s and 180 s for this reason. 
The IF estimate after impulse subtraction is more 
coherent. 
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Figure 4. (a) Original RRI signal. (b) Thin line: RSA IF 
estimate using the original RRI signal. Thick line: RSA 
IF estimate after impulse subtraction. 

6. Conclusion

Impulses are often present in RRI signals, and 
correspond to short-term accelerations and decelerations 
of the heart rate.  In this paper we present a nonlinear 
scheme to extract these impulses from an RRI signal, and 
demonstrate that features drawn from the extracted 
impulse signals are of interest to assess sympathetic 
activation. In the near future, we plan to explore possible 
clinical uses of these impulses. 
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