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Abstract

In this work quadratic phase coupling between respi-

ration and heart rate variability (HRV) has been studied

during emotional and mental stress using wavelet cross-

bispectrum (WCB). A total of 80 healthy volunteers sub-

jected to a standard stress protocol have been analyzed.

Some features derived from the WCB, such as the frequen-

cies at which the maximum peak is located, the distribution

of the dominant peaks and the phase entropy have shown

statistical significant differences between stress and relax

stages. A support vector machine classifier based on these

features discriminates stress stages from relax ones with an

accuracy ranging from 68 to 89%, suggesting that the in-

teractions between respiration and HRV are altered during

stress and may be used to assess it.

1. Introduction

Stress consists in a general adaptation syndrome “de-

scribed as the non-specific response of the body to any de-

mand on it” [1]. Stress is a highly subjective phenomenon

and indeed many factors, including personality ones, will

modulate the perception of stress and the arousal caused

by the stressor. In an attempt to obtain an objective mea-

sure of stress, a variety of studies have proposed physio-

logical markers including blood pressure (BP), heart rate

(HR), various indices of heart rate variability (HRV) and

respiration [2–4].

HRV is a non-invasive technique, which provides an in-

dicator of Autonomic Nervous System (ANS) activity. A

typical power spectrum has main frequency components

such as the Low Frequency component (LF: 0.04-0.15 Hz)

that is mediated by both sympathetic and parasympathetic

systems and the High Frequency component (HF: 0.15-0.4

Hz) that reflects the Respiratory Sinus Arrhythmia (RSA)

and is mainly mediated by parasympathetic systems [5].

In [4] the inclusion of respiratory frequency information

in HRV analysis improved the ability of HRV to discrim-

inate stress, which motivates the analysis of the relation-

ship between respiration and HRV during stress. Different

methods have been applied to investigate cardiorespiratory

interactions [6]. In this work we propose to use the Wavelet

Cross Bispectrum (WCB), to take into account the possible

nonlinear relationship between respiration and cardiovas-

cular system, as suggested in [7], and the non stationarity

of the signals under stress [8].

2. Materials and methods

2.1. Database

A data base of 80 healthy volunteers (40 men and 40

women), who had not been diagnosed with any chronic

disease or psychopathology, with an age of 21.57±3.97
was recorded in the Autonomous University of Barcelona

and University of Zaragoza. The protocol included two

sessions, basal and stress, that were performed on different

days but at the same hour for each participant [4]. The

basal session is an autogenic relaxation condition that is

divided in two parts for comparison with the other session:

the first 10 minutes is a baseline stage (BLB) and the next

25 min is a relaxing stage (RS). The stages of stress session

are the following:

i. Basline stage (BLS): A 10-minutes length autogenic

relaxation condition.

ii. Story Telling (ST): 3 stories with a great amount of

details were told to the subject, who was requested to

remember as much details as possible.

iii. Memory Task (MT): The subject had to reiterate aloud

all the remembered details about the 3 stories.

iv. Stress Anticipation (SA): The subject was instructed

to wait alone during 10 minutes for the evaluation of

the previous task.

v. Video Exposition (VE): The presentation of a video

clip from the subject performance in MT was shown.

A video of an actor remembering all the details was
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displayed before that, trying to make the subject be-

lieve that his/her performance was very low.

vi. Arithmetic Task (AT): The subject had to perform in

5 minutes successive subtractions of 13, starting from

the number 1022 and in case of a calculation error, the

countdown was restarted from the beginning.

Only the last five stages of the Stress Session are con-

sidered stressful. In order to avoid possible transient phe-

nomena between the different stages, only the six central

minutes in the stages BLB, RS, BLS and SA are analyzed.

In this approach the MT and AT are not examined due to

the fact that the interpretation of results would be difficult

while the subject was speaking.

A Medicom system, ABP-10 module (Medicom MTD

Ltd, Russia), was used for recording respiratory signal

(chest-band based) at 250 Hz and 3 orthogonal leads of

the ECG signal, at 1 kHz. The HRV signal was generated

from the beat occurrence time series, detected on Z-lead

of the ECG, based on the integral pulse frequency modu-

lation (IPFM) model, which accounts for the presence of

ectopic beats [9] and sampled at a sample frequency (fs)

of 4 Hz. The respiration signal was downsampled to 4 Hz.

HRV and respiration were filtered, with a pass-band filter

(Butterworth 6th order with cutoff frequencies of 0.04 and

0.8 Hz). Both signals were normalized to have the same

energy.

2.2. Wavelet Cross-Bispectrum (WCB)

A generalization of bispectral analysis leads to Wavelet

Cross-Bispectrum (BWCB) that consists of wavelet biampli-

tude (AWCB) and wavelet biphase (φWCB) [10]:

BWCB(f1,f2) =

∫

T

Wx(f1,τ)Wy(f2,τ)W
∗

x (f12,τ) dτ

= AWCB(f1,f2) e
jφWCB(f1,f2) (1)

where f12 = f1+f2. The integration is done over a finite

time interval T : τ0 ≤ τ ≤ τ1. The Wx(f, τ) and Wy(f, τ)
in (1) are the Continuous Wavelet Transform (CWT) coef-

ficients and are given by:

Wx(f, b)=
1
√
a

∞
∫

−∞

x(t)ψ∗

(

t− b

a

)

dt (2)

where ψ(t) is the mother wavelet scaled by a factor a, a>0,

and dilated by a factor b. The frequencies could be inter-

preted as inverse scales, i.e. a =fcfs/f where fc is center

frequency of the mother wavelet and fs the sampling fre-

quency.

The signal x (t) corresponds to the HRV signal and y (t)
is the respiration signal, so the WCB measures, in the fi-

nite time interval T , the amount of Quadratic Phase Cou-

pling (QPC) that occurs between components of HRV at

frequency f1, components of respiration at frequency f2

and components of HRV at frequency f1+f2. Thus, the

WCB can be considered a measure of cardiorespiratory

coupling. Due to the symmetries in the definition and the

limitation set by fs the WCB estimation is done in the re-

gion Ω : f1 + f2 ≤ fs/2.

The different stages of the experiment have different du-

rations. In order to have the same resolution in all of them

the WCB is computed in segments of duration (T ) 50±2.5
sec with an overlap of 12.5±2.5 sec. Regarding the im-

plementation of CWT the complex Morlet wavelet was

used with bandwidth parameter fb = 0.5 Hz and center

frequency fc = 0.3 Hz. These values were selected based

on the frequency content of cardiovascular and respiratory

oscillations.

2.3. Cardiorespiratory features

Different features are computed for each segment. The

final feature set consists of the mean of the features’ values

in all the segments for each stage. The features that are

related to the wavelet biamplitude are the following:

(fHRV, fR) = argmax
f1,f2

{AWCB (f1, f2)} (3)

Then, the M local maxima, which are at least higher

than half of the AWCB (fHRV, fR), are detected and denoted

(fHRVi
, fRi

). Subsequently, the mean distance (DM) of the

M local maxima to absolute maximum is computed:

DM =
1

M

M−1
∑

i=0

√

(fHRV − fHRVi
)
2
+ (fR − fRi

)
2

(4)

Note that DM remains a feature which measures the en-

ergy distribution around the absolute maximum. The next

feature is related with the wavelet biphase and it is called

phase entropy (Pe). The φWCB (f1, f2) is quantized in N

bins sized 2π/N radians, indexed by Bn (n = 0, ..., N−1),
with N being the number of samples in the interval T .

Then, a relative histogram p(Bn) (Figure 1) is computed

by dividing the number of elements in each bin Bn by the

total number, L, of possible pairs (f1, f2) which compose

the domain Ω. The next step is to calculate the Shanon en-

tropy, which is a measure of randomness and it is taken as

a feature [11]:

Pe = −

N−1
∑

n=0

p (Bn) log (p (Bn)) (5)

2.4. Statistical analysis and classification

procedure

A statistical analysis was performed for the cardiorespi-

ratory features. A Student Test or a Wilcoxon paired sta-

tistical test is implemented depending on the distribution

of the data, Gaussian or not, respectively. The purpose
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Figure 1. The histograms for (a) relax, (b) stress stage

of this analysis is to find statistical differences in feature’s

values between stress (ST, SA, VE) and relax (BLS) stages

within the same subject (paired test) and day. Furthermore,

the two relax stages from the same subject but on different

days (BLS, BLB) were compared to test the repeatability of

the measurement.

Then, we approached the problem of classification of

each stage as stressful or relaxing. All stress stages (ST,

SA, VE) were pooled together to form the stress group,

while the relax stage of basal session (RS) formed the relax

group. The rationale for using (RS) instead of BLS and BLB

was that it had a similar timing within the session as stress

stages. In order not to over-fit the classifier, only the three

most significant features were used. A Support Vector Ma-

chines classifier (SVM) was used (Gaussian radial basis

kernel, scaling factor σ = 1). A 3-fold cross-validation

scheme was adopted and repeated 50 times. The classifi-

cation performance was evaluated through the classifica-

tion accuracy rate (CA), that is the number of corrected

predictions divided by the total number of predictions, av-

eraged for the total number of repetitions and the metric

F-measure or F1 score (F1), that is the harmonic mean of

precision (true positives divided by the sum of true posi-

tives and false positives) and recall(true positives divided

by the sum of true positives and false negatives) averaged

for the total number of repetitions.

3. Results

Table 1 shows the p-values of statistical paired tests.

Each comparison BLB, ST, SA, VE vs BLS was done indi-

vidually, maximizing the number of subjects in each com-

parison (37, 40, 44, 44 respectively). The reduced number

of the subjects in each comparison is due to the rejection of

respiration signals with motion artifacts in different stages.

The Wilcoxon tests are marked with different color and

when the null hypothesis was not rejected is marked with

“−”.

Table 2 shows the results of the classification problem.

For each stage of the classification procedure, i.e. ST, SA,

VE, RS all the possible subjects (47, 52, 53, 57 respec-

tively) with measurements were selected.

The Figure 2 represents the boxplots for the features that

had been used in the classification procedure in each stage.

Table 1. The p-values of statistical paired tests

Cardiorespiratory Features

Stages fR DM Pe

BLB vs BLS − − −
ST vs BLS 4.73·10−14 3.15·10−8 1.55·10−6

SA vs BLS 6.04·10−5 4.03·10−6 1.41·10−5

VE vs BLS 1.09·10−7 5.03·10−5 2.06·10−9

Table 2. The metrics CA and F1 for the SVM classifier

Metrics

Stages CA ± std(%) F1 ± std(%)

ST vs RS 89.37±3.65 88.25±4.07

SA vs RS 67.89±5.65 66.45±6.06

VE vs RS 85.82±4.71 84.94±5.11

4. Discussion

In this paper changes of QPC of HRV and respiration

during stress have been investigated, in particular through

features fR, DM, and Pe. Based on the results of statistical

analysis (Table 1) the three selected features have the ca-

pacity to discriminate between stress and relax stages. Two

of them, ST and VE, have the most significant differences

respect to basal. In the SA stage, the subject was waiting

for the evaluation of previous tasks, in contrast with the ST

and VE stages, wherein there was a specific stressful stim-

uli. The absence of a specific stressful stimuli in SA could

imply that SA is less stressful than ST and VE, and that

could explain the lower significant differences. No sig-

nificant differences were found between the two relaxing

stages (BLS, BLB).

Results of classification (Table 2), suggest that the se-

lected features have discriminant power in the stress condi-

tions ST (CA=89.37%) and VE (CA=85.82%) rather than

SA. Figure 2 shows that the index fR tends to get higher

values in stress stages (ST, VE). Furthermore, regarding

DM, the local maxima representing other significant cou-

plings between frequency components are closer to the

maximum peak in the relax conditions than in stress, fact

that is compatible also with the Pe feature. The Pe is lower

(relax) when the process tends to be harmonic, while is in-

creased (stress) when the process becomes more random.

5. Conclusion

This work has studied changes in quadratic phase cou-

pling between respiration and HRV during emotional and
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Figure 2. The boxplot for the feature (a) fR, (b) DM, (c) Pe

mental stress using wavelet cross- bispectrum (WCB).

Some features derived from the WCB have shown statisti-

cal significant differences between stress and relax stages.

Among them one feature related to respiratory frequency

achieved the best results (p-value < 10−13). Classification

based on features related to respiratory frequency, the en-

ergy distribution around the maximum peak and phase en-

tropy discriminates ST from relax with 89% accuracy and

VE with 86%. These results supports that the interactions

between respiration and HRV are altered during stress and

may be used to assess it.
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