Network analysis of heart beat intervals using horizontal visibility graphs
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Abstract

Heart beat interval time series contain information pre-
dictive of heart disease, but most current predictors do not
provide sufficient reliability for clinical use. Using several
predictors improves predictive power, but the limit is not
yet known, suggesting that not all the information in inter-
beat interval series has been captured by previous work.

We convert heart beat time series into scale-free net-
works using horizontal visibility graphs (HVGs), which are
well-suited to distinguishing deterministic dynamical sys-
tems from stochastic systems, allowing them to model new
aspects of autonomic heart rate modulation. Based on the
HVG, we introduce and evaluate a general class of predic-
tors, which can be used to augment existing features used
in heart rate variability (HRV) analysis, and which exhibit
high predictive power for several types of heart disease.

We show the statistical significance of these network
predictors, and their competitive performance to popular
statistical, geometric and non-linear features, on ICU and
Holter ECGs, including several heart disease etiologies.

1. Introduction

Heart rate variability (HRV) analysis is based on time
series of intervals between heart beats (R-R intervals),
which have been argued to contain information predictive
of some types of heart disease, such as heart failure. Low
heart rate variability has been proposed to indicate reduced
cardiac regulatory capacity and is a strong predictor of
mortality and health issues [1-3].

However, current HRV analysis methods are not reli-
able enough for widespread clinical practice [4]. No single
predictor is powerful enough to facilitate high prognostic
power. For this reason, several authors have argued for a
combination of several different predictors [5, 6]; but the
limits of this approach have not yet been reached [5], sug-
gesting that there is under-utilized information.

Several families of predictors have been used, including
statistical features, geometric features (based on empiri-
cal sample density distributions of the R-R intervals), non-
linear features (based on tools from non-linear dynamical
systems theory to infer and characterize system behavior,
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such as attractor reconstruction), and frequency-domain
methods (separating and analysing spectral components at
different frequencies) [4]. We describe and evaluate some
representative examples in Sections 2 and 3 below.

Here, we propose a new class of predictors based on
complex networks. The key idea is the conversion of the
time series into a graph, while preserving its structure and
important properties, in order to facilitate the use of com-
plex network analysis tools.

1.1.  Horizontal Visibility Graphs

A horizontal visibility graph is a network constructed of
a time series (t1,21), ..., (tn, Zn ), such that each x has a
corresponding vertex, each pair of vertices corresponding
to a pair of values z, and z;, is connected by an edge if both
Tq, Ty > Xy forall a < n < b (see Figure 1). HVGs have
been argued to be well-suited to distinguishing stochastic-
ity from deterministic dynamical systems [7], and thus are
useful for HRV analysis (based on the argument of auto-
nomic modulation influencing variability).

The HVG of a time series is invariant under affine trans-
formations, preserves structural properties (such as peri-
odicity and fractality, shown to be highly relevant for HRV
analysis [8]), and can discriminate stochastic and chaotic
processes [7]. In addition to these properties, the conver-
sion to a graph opens the door to performing complex net-
work analysis on R-R time series [9].

1.2.  Possible Causes of HRV and Corre-
sponding Complex Network Features

Several explanations for the impact of disease on HRV
have been proposed (see [3, 10] for reviews). For exam-
ple, [11] implicated the effect of vagal tone on beat to beat
fluctuation (a rapidly reacting sympathetic control system
adjusting heart rhythm upon beat-to-beat perturbations due
to e.g. blood pressure changes or movements). In contrast,
[12] suggested fractal properties of normal heart rhythms
to arise from nonlinear regulatory systems, and hypothe-
sized their break down with reduced adaptive capacity.

These hypothesized mechanisms implicate some net-
work descriptors to be more plausibly useful than others.
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Figure 1. Horizontal visibility graph analysis. From a
time series of heart beat intervals (top), those pairs of val-
ues which are ‘visible’ — such that they are greater than all
values in between (right) — are connected via an undirected
edge, yielding a graph representation (bottom) which re-
tains key properties of the structure of the input time series
(e.g., periodicity and fractality)

The effects of a sympathetic control system decreasing
variability by over-regulating perturbations [11] should be
visible using basic graph properties such as its diameter
(maximum of all eccentricities) or radius (minimum of
eccentricities), where eccentricity of z, is defined as the
distance to the vertex x; farthest from it. Finally, the con-
nectivity of the graph can be quantified using its transitiv-
ity (fraction of all possible triangles present in the graph).
The suitability of these features to model variability di-
rectly follows from the the relationship between visibility
and variability [7]. Briefly, a time series without variabil-
ity would lead to no visibility beyond adjacent neighbors,
and thus to a linear chain (with very large radius / diameter
and few central nodes), whereas maximal variability would
yield strongly connected graphs with opposite properties.
On the other hand, [12] suggests fractal properties,
which are frequently exhibited by small-world networks
[13], indicating that the ‘small-world-ness’ of a network
may be a good metric for indirectly modelling the activity
of the postulated nonlinear regulatory system using R-R
time series. Small world networks allow reaching any ver-
tex from any other vertex using a very small number of
steps. The clustering coefficient [14] can be used to de-
termine to what extent a graph is a small world network.
The average shortest path length and the degree as-
sortativity (a measure of connectivity of vertices with the
same degree - usually there are large differences in small
world network due to clustering) are measuring related
properties. In addition to assortativity, which has been
studied before, we also propose a novel connectivity mea-
sure, disassortative entropy, defined as the entropy of the
mixing matrix (which contains the joint probabilities of
edges of the same degree - see Section 2.2) which mea-
sures the expected information content of the tendency of

vertices to connect to similar vertices. A graph always con-
necting high-degree vertices to other high-degree vertices
would maximize assortativity, a graph doing the oppositive
would minimize it, and a graph in which the connectivity is
randomized would maximize disassortative entropy (thus,
this feature is a second-degree measure of stochasticity).
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Figure 2. Horizontal visibility graphs of R-R series ex-
tracted from ECGs of three healthy participants (top row)
and three patients with congestive heart failure, chronic
pulmonary heart disease, and primary cardiomyopathy re-
spectively (bottom row). Note the higher centrality, heav-
ier connectivity, and clustering in the top row, and the
tendency to build a simple ring (corresponding to small
amounts of variability and fractality) in the bottom row

2. Methods

Two datasets were used as the data source for patients
with heart disease, the Multi-Parameter Intelligent Moni-
toring for Intensive Care (MIMIC) II dataset [15] and the
Coronary Artery Disease (CAD) Holter data from the Tele-
metric and Holter ECG Warehouse [16]. We extracted
the subset of MIMIC II that 1) contained ECG waveforms
matched to ICD-9 codes and 2) corresponded to one of
the four disease etiologies modelled below — congestive
heart failure (CHF), primary cardiomyopathy (PCM), and
chronic pulmonary heart disease (CPHD) and CAD. From
each subject’s corresponding waveforms, up to 10 R-R
time series, each with one minute duration, were extracted
using the most recent version of PhysioNet’s ecgpuwave
beat detector [17]. In total, there were 613 congestive heart
failure, 74 cardiomyopathy, and 71 chronic pulmonary dis-
ease patients in MIMIC II, and 271 patients in the CAD
data set.

For verified healthy control data, we have used the MIT-
BIH Normal Sinus Rhythm database (18 participants aged
26 to 50, including 5 men and 13 women) and the Phys-
ioNet Fantasia dataset (twenty young — 21-34 years old —
and twenty elderly — 68-85 years old — rigorously-screened
healthy subjects), a total of 58 healthy control participants;
once again extracting 10 one-minute R-R time series.



To test whether the suggested features are predictive, for
each of the disease etiologies mentioned above, we per-
form a non-parametric Mann-Whitney U test [18]. We also
compared predictive power, reporting areas under the Re-
ceiver Operating Characteristic (ROC) curve (AUC) [19]
with and without adding proposed network features to a
recent HRV classification system [5] based on a random
forest with 30 trees [20], and five-fold cross-validation.

2.1. Network features

We calculated the following features (see Section 1). Let
G denote the graph, lower-case characters vertices and Vg
the set of all vertices in G, and d(a, b) the distance between
two vertices (defined as the shortest walk along the existing
edges). Furthermore, let deg(v) be the number of edges
connected to vertex v, and ecc(v) = maxgev,{d(v,z)}
be the eccentricity of a vertex v.
1. Diameter: diam(G) = maxev,{ecc(z)}
2. Radius: rad(G) = mingev, {ecc(x)}
3. Transitivity: T(G) = |Tri(G)|/|Tri(V)|, where
Tri(G) is the set of all triangles in G, and Tri(V) the
set of all possible triangles given all vertices V'

2|Tri(v)]

- _ 1

4. Clust. coefficient: C(G) = ‘VT‘ Z’UEG m,
where T'ri(v) is the set of all triangles through vertex v

. — __d(ab)
5. Avg. shortest path length: I(G) = 3~ ,eve, WaTve=T)
6. Assortativity: r(G) = (0,05) 7! >y TY(exy — azby),
where e, is the joint probability of degrees of vertices x
and y, and a, and b, are the fraction of edges starting /
ending at vertices x and y. See [21] for details.
7. Disassortative entropy: E(G) =2, >, €xylogesy

2.2. Comparison features

We also calculate the following, previously proposed
statistical, geometric and non-linear features of a time se-
ries S = (1, ..., x,) of interbeat intervals for comparison.
We closely follow the setup of [5], in order to facilitate
quantitative comparison with a state of the art system.

Statistical:

8. Standard deviation: SDNN(S) = o(S) = /Var[9]
9. Root mean squared standard deviation: RMSSD =
15171 S (g — )2

10. Ratio of the number of successive R-R interval differ-
ences greater than 20ms to the total number of intervals:
pNN20 = |x; : (zi41 — ) > 20[/]5]

11. — 14. Approximate entropy ApEn(m,r,|S|) =
®(r) — ®2(r), calculated for four different values r €
0.16(5),0.150(5),0.20(S5),0.250(S). See [5].

15. Geometric: HRV triangular index: HRI = |S|/N.
N is the no. of intervals in the modal bin of a histogram

Dynamical systems (each of these features is calculated
five times, at delay parameters T € {1, 2, 5,10, 20} [5]):

16. —20. Spatial Filling Index: SFI = s/n?, where s is
a combined factor of the point distribution in phase space
(calculated using time-delay embedding in 2D) and n is
the number of squares used to estimate the distribution [5]
21. — 25. Central Tendency Measure: CTM =
ZE;Q 0(A;), where 6(A;) = 1 if and only if

\/(xi+2 — Zi41)% + (2541 — 24)? < r and 0 otherwise.
26. — 30. Correlation Dimension of the 2D embedding:
Dy = lim.. o+ (In(e/€"))"tog(C(e)/C(€")), where C
is the correlation integral (see [5] for details).

3. Results

We evaluated the proposed features on three heart dis-
eases from MIMIC II, and on the CAD dataset. p-values
of Mann-Whitney U tests of the positive vs. negative group
are P << 0.001 for all seven network features and all dis-
ease types. The network based features are not strongly
correlated to the comparison features (average correlation
between network and all other features on all disease types:
r = 0.006), suggesting that network features capture dif-
ferent information from existing features.

Figure 3 compares accuracy and AUC scores across fea-
tures. Network features (1-7) achieve over 80% accuracy
on their own, with the HVG diameter achieving 90%. The
AUC scores achieved by the best two single network pre-
dictors (AU Cyiameter = 0.730, AUC\qqius = 0.730) are
significantly higher than that of the best comparison pre-
dictor (AUCcrpr = 0.681), with p-values of 0.021 and
0.022 according to Mann-Whitney U tests. The first three
features, inspired by the hypothesis of sympathetic over-
regulation, outperform the others, which partially capture
fractal and connectivity structure. Within the connectivity
features, the completely novel predictor disassortive en-
tropy (AUC = 0.659) shows a significant improvement
over both assortativity (AUC = 0.586) and clustering
(AUC = 0.566), which have been explored before [22].

We have also implemented a state of the art multi-
feature HRV classification system [5], and compared it
with and without network features on MIMIC II (Table 1).

Table 1. Classification performance (accuracy [acc] /
AUC) without and with network features - comparison

CVD Score w/o. Score w. p-val.
PCM acc 0.851 £0.023 0.902 +£0.023 0.036*
PCM AUC 0.926 +£0.017 0.960 £0.010 0.021*
CPHD acc 0.848 +£0.019 0.904 £0.027 0.036*
CPHD AUC 0.927 £0.020 0.961 +£0.014 0.037*
CHF acc 0.938 £0.008 0.948 +0.009 0.210
CHF AUC 0.921 +£0.032 0.947 £0.025 0.140
CAD acc 0.736 +£0.002  0.745 £0.001  0.011*
CAD AUC 0.801 £0.003 0.811 £0.002 0.030*




) W RS
08 —— "AUC Score ~

0.7

0.6

05 Network
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

16

Non-linear
17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 3. Predictive power (accuracy and AUC) of single network features (1-7) and single comparison features (8-30)

4. Conclusion

We introduced and evaluated a class of descriptors for
HRV analysis, based on HVGs. The observations that
they are decorrelated from traditional HRV features, and
can significantly outperform them, suggests that it may be
worthwhile to augment HRV analyses with network pre-
dictors, and to investigate HVG predictors in future work.
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