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Abstract 

In heart rate monitoring, the Electrocardiogram (ECG) 
is commonly used and is considered to be the gold standard 
in the field. However, long term monitoring with ECG is 
rarely used except for ICU and 24-hours Holter. 
Prolonged cardiac monitoring in various setups can be 
achieved using a Ballistocardiogram (BCG), which serves 
as a convenient way for contact free monitoring of the 
heart activity. 

This study was aimed to assess the potential of 
measuring cardiac Inter Beat Interval (IBI) series in real-
time using a BCG signal using a contact-free piezo-electric 
sensor placed under the mattress (EarlySense Ltd.). In this 
paper, we evaluated three real-time novel algorithm that 
provide IBI measurement, predicated IBI measurement 
accuracy and IBI statistic.  

The performance of these algorithms was evaluated 
using IBI series derived from one-lead ECG signal. The 
results support the claim that under the mattress piezo-
electric sensor can be used to accurately measure IBI in 
real-time, and establish the basis for Heart Rate 
Variability (HRV) analysis.   

1. Introduction

Ballistocardiography depicts the acceleration or recoil 
of the body that is concomitant to each ejection of blood 
from the ventricle to the aorta [1]. It has drawn special 
attention in the past couple of years since it enables long-
term measurement of heart rate activity without wearing 
any sensors or electrodes on the body. A BCG signal can 
be obtained using sensors placed on a chair, on a bed, on a 
weighing scale or directly on the subject [2].  

Measurement of the average heart rate using under the 
mattress piezo electric sensor (EarlySense Ltd.) is 
commercially available since 2009 and was already widely 
validated [3] and tested [4]. In this work we intended to 
assess the ability of such sensors to measure each IBI as 
the basis for an accurate beat-by-beat analysis of the heart 
activity. This can help to detect several types of cardiac 
abnormalities and can also help provide a precise 

spectral analysis of the variation in the IBI series, used for 
heart rate variability analysis, sympathovagal balance 
(stress) measurement and sleep staging. 

In a BCG signal, the beats are less pronounced in 
comparison to an ECG signal, thus, the task of detecting 
each heartbeat from a BCG signal is considerably more 
difficult. This occurs due to two main reasons. First, the 
signal to noise ratio (SNR) of the BCG signal is much 
lower than the SNR of the ECG signal. Second, the 
variability in the composition and thickness of the 
mattress, the user position with respect to the sensor, the 
body motion and the changes in respiration amplitude can 
all have tremendous effect on the BCG signal, and thus 
make the detection of the heart beats to be more difficult.  
 In this work, the performance of three novel algorithms 
was tested. The first is used for real-time IBI measurement 
obtained only while the user is lying in bed. The second is 
used for real-time classification of the beats measured 
using the first algorithm based on anticipated accuracy. 
The third is used to acquire discrete IBI distribution maps 
throughout the night recording, based on IBI data from 
overlapping 15 minutes windows. The Algorithms were 
designed with low algorithmic complexity to allow a real-
time analysis which can be applied in cellular phones.  

2. Methods

2.1. Signal acquisition and reference 

    The BCG data were acquired from 25 home sleep 
recordings of 14 healthy individuals in a two-in-bed 
setting. The signal was acquired using a piezo-electric 
sensor placed beneath the mattress under the tested subject 
[3]. The heart rate of each subject was measured using a 
medical grade and FDA approved ECG device (Embletta, 
ResMed, USA) which recorded the heart rate using a one-
lead ECG. These over-night recordings produced a test set 
which consists of nearly 500,000 IBIs, hence forth termed 
“data set 1”. Additional data, hence forth termed “data set 
2”, was acquired from several recordings of individuals 
with different prominent heart arrhythmia. The recordings 
were done in a one-in-bed setting. Their cardiac activity 
was monitored in real-time using an ECG monitor. 
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2.2. Measurement algorithm 

This algorithm produces a continuous IBI 
measurements, which consists of measurements acquired 
only while the subject is lying in bed. The algorithm can 
be broken down into six steps:  

1. The raw BCG signal is processed using a bank of
finite impulse response (FIR) bandpass filter with
different passing frequencies and with an Empirical
Mode Decomposition (EMD) filter [3].

Steps 2-5 are applied separately to each filtered signals. 
2. Peak detection is performed based on the filtered

signal morphology.
3. An approximate IBI is computed using average

heart rate estimation based on spectral features of
the raw signal and IBI statistics obtained from
previous IBIs measured. The IBI approximation
dictates a localized search area to find the signal
peaks induced by the cardiac activity.

4. Several peaks, suspected as induced by the cardiac
activity, are chosen in each localized search area
based on the filtered signal morphological features.

5. The IBI measurement is computed based on
selecting only one peak in every localized search
area. The selection of which peaks most accurately
characterize the IBI is based on morphological
similarity and distance similarity between the peaks
of three consecutive localized search areas.

Step 6 is applied on all filtered signals together. 
6. For each IBI, the measurements obtained using

each of the filters according to step 5 are evaluated
according to anticipated accuracy. The most
accurate measurement serves as the selected IBI
measurement. The accuracy criterion depends on
morphological characteristics of the filtered signal,
local IBI duration statistics and average heart rate
estimation based on spectral features.

2.3. Classification algorithm 

Binomial logistic regression model was used to classify 
each IBI measured using the first algorithm into one out of 
three groups according to anticipated measurement 
accuracy. The regression parameters were based on 
morphological attributes of the BCG signal, average heart 
rate estimated from spectral analysis of the BCG signal and 
IBI statistics of adjacent beats.  

The regression coefficients were determined using a 
numerical optimization method called particle swarm 
optimization (PSO, [5]). Data set 1 was selected as the test 
set for optimizing the regression coefficients. The 
optimization was tuned to select a subset containing 70% 
of the all IBIs acquired using the measurement algorithm 
with the maximum number of IBI measurements with 
absolute measurement error of 17 milliseconds or less 

compared to the ECG derived IBI. 

2.4. IBI distribution estimation algorithm 

The dependence of the first algorithm on IBI history 
may lead to tracing difficulties when the IBI data is very 
variable or contains abrupt changes. As such, an additional 
algorithm was designed which largely depends on signal 
morphology and only slightly depends on IBI history. This 
algorithm was designed with the aim of achieving IBI 
statistics, particularly for patients with variable IBI, such 
as, patients with prominent Respiratory Sinus Arrhythmia 
(RSA), and patients with heart rhythm abnormalities. 

This algorithm produces a discrete IBI distribution map, 
where each one dimensional distribution is based on the 
IBIs measured in a 15 minute time windows. The temporal 
overlap between adjacent time windows was chosen to be 
13 minutes and the IBI’s discrete sampling resolution was 
selected to be 50 milliseconds. The beat detection stage 
was designed to work in real-time and measure only part 
of the continuous IBI set with only slight consideration to 
IBI history. The algorithm can be summarized as follows: 

1. Filtering the raw BCG signal using a set of FIR
filters, each with a unique frequency response, used
to capture the cardiac signal.

Steps 2, 3 and 4 are performed on each one of the 
filtered signals individually.   

2. Performing a peak detection based on
morphological characteristics of the filtered signal.

3. Selection of valid peaks which can be used for IBI
measurement. The selection is based on
morphological features of the filtered signal,
morphological similarity between adjacent peaks
and real-time measurements of averaged heart rate.

Steps 4 and 5 are applied only at the end of the time 
frame of each one dimensional distribution. 

4. Applying an outlier exclusion scheme which rests
on concepts taken from the local outlier filter
(LOF) algorithm [4]. The algorithm examines all
the detected IBIs in the 15-minute window and
determines which can be used to estimate the
discrete distribution and which should not be used.
The decision is based on average distance from
neighbours in a one-dimensional parameter space,
where the parameter examined is the IBI.

Step 5 is applied on data acquired from all the filtered 
signals together. 

5. Selecting the largest IBIs set as representing the
discrete distribution at the examined time frame. If
the size of all sets is smaller than a predefined size,
no distribution is calculated for the time frame.

2.5. Performance evaluation  

Lead II ECG was sampled at 200Hz and recorded using 

 

 

  



a portable device. This was used to extract the reference 
continuous IBI sets Areas in the signal in which ECG data 
was distorted were excluded from the analysis. The 
reference data was used to assess the accuracy on a beat by 
beat level of the continuous IBI set obtained using the 
measurement algorithm and the IBI subset classified as 
most accurate according to the classification algorithm.  

The ECG data for all the two-in-bed patients was used 
also to generate a discrete IBI distribution maps with the 
same features (time overlap and discrete sampling 
resolution) as the IBI distribution maps computed using the 
third algorithm. Theses maps were used to assess the 
performance of the third algorithm. The similarity between 
the maps was evaluated per distribution map using a 
distance score based on chi-square distance: 
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Where 𝑀𝑀 represents  the number of time windows 
examined, 𝑁𝑁 is the number of observations of the discrete 
IBI distribution, 𝑖𝑖 represent the i-th discrete sample and 𝑘𝑘 
represents the k-th time frame, 𝑝𝑝𝑖𝑖 ,𝑘𝑘 represents the estimated 
discrete IBI distribution map, 𝑞𝑞𝑖𝑖,𝑘𝑘 represents the reference 
discrete IBI distribution map. 

The distance score was only calculated for time frames 
in which the algorithm produced a valid discrete 
distribution (according to step 5). This distance score 
ranges between 0 and 2, where 0 represents an exact match 
between the distribution maps and 2 represents a two 
completely different discrete distribution maps. 

Data set 2 was also used to assess the quality of the IBI 
distribution algorithm. The data was compared both 
visually and according to the similarity criteria to gain 
insights whether this algorithm can also be used to analyze 
IBI statistics of patients with arrhythmia.  

3. Results

3.1. Measurement algorithm 

The real-time IBI measurements were compared on a 
beat-by-beat level to the IBIs from data set 1. Table 1 
summarizes the percent of IBIs from the entire IBI set 
which were accurately measured under different 
measurement error thresholds. 

Table 1. Real-time IBI measurement accuracy results. 
Maximum Absolute 
Measurement Error 

[millisecond] 

Percent of IBI 
correctly measured 

from the entire IBI set 
4.15 42.17 
8.30 58.79 

12.45 68.23 
20.75 77.44 

Due to sampling frequency limitations, the results are 
displayed in table 1 with a discrete resolution of ~4.15 
millisecond, corresponding to a sampling resolution of ~ 
240 Hertz. As can be seen in table 1, nearly 60% of the 
IBIs were measured with an absolute error of up to 8.3 
milliseconds and almost 78% of the IBIs with an absolute 
error of up to 20.75 milliseconds.  

3.2. Classification algorithm 

The performance evaluation has shown that the logistic 
regression classification method was able to detect a subset 
of IBI measurement which are, on average, more 
accurately measured than the entire set. The measurement 
accuracy of the subset classified as more accurate showed 
a significant improvement comparing to the entire IBI set. 
In this subset, 90% of the IBIs had an absolute 
measurement error of 20.75 milliseconds or less, which 
indicates an increase of almost 13% compared to the entire 
set, and 70% of the IBIs, had an absolute measurement 
error of 8.3 milliseconds or less, which indicates an 
increase of nearly 12%. This subset average absolute 
measurement error equals to 13.2 milliseconds. 

3.3. IBI distribution estimation algorithm 

The performance evaluation has shown significant 
similarity between the estimated discrete distribution maps 
and reference discrete distribution maps. The evaluation 
yielded an average distance score of 0.128 with a detection 
rate of nearly 100%, where 80% of the night recordings 
obtained a distance score of 0.15 or lower.  

Figure 1. Reference and estimated IBI distributions map of 
a subject with prominent respiratory sinus arrhythmia. 

 

 

  



Testing this algorithm on several patients with variable 
heart rhythms, i.e., data set 2, has also shown very 
promising results. As can be seen in figure 1, the algorithm 
was able to accurately estimate the discrete IBI distribution 
of a young girl with prominent respiratory sinus 
arrhythmia (RSA). The algorithm demonstrates a potential 
to accurately trace changes in the IBI distribution 
throughout this BCG recording.    

The algorithm was also tested on another subject, 
suffering from atrial fibrillation. As can be seen in figure 
2, the algorithm was successful in detecting heart beat 
rhythm irregularity, which causes continuous alternation 
between a longer heart beat (around 800 milliseconds) and 
a shorter heart beat (around 450 milliseconds). From the 
algorithm results, we can also determine with some 
accuracy the ratio between the number of longer beat and 
the number of shorter beats (according to the reference – 
3:1, according to the estimation – 5:1).      

Figure 2. Reference and estimated IBI distributions map of 
a subject suffering from atrial fibrillation (AFib).  

4. Discussion and conclusions

The purpose of this study was to evaluate the potential 
of obtaining accurate IBI measurements and statistics from 
a BCG signal acquired using a contact free piezoelectric 
sensor placed under the mattress. This study displayed 
three novel real-time algorithms used for measuring the 
IBI, classifying them according to suspected accuracy and 
estimating the IBI distribution in a 15 minute windows.  

The results provide compelling evidence that the first 
algorithm presented can accurately measure the cardiac IBI 
in real-time with relatively low algorithmic complexity. 
The second algorithm was shown to provide a reliable 
assessment of accuracy of the real-time IBI measurement 

obtained using the first algorithm. The evaluation has also 
shown that the third algorithm can potentially serve as a 
future indicator of specific arrhythmia, when the 
arrhythmia occurs frequently and consistently.  

This proven ability to measure accurate IBI on a beat-
by-beat basis enables Heart Rate Variability (analysis) 
with this contact free sensor. It is used as the basis for 
calculations of the sympathovagal balance which is used 
for stress evaluations, as well as for sleep staging.  

For a healthy heart during homeostasis condition, each 
electrical triggering of the ventricle, reflected by the QRS 
and ECG, is followed by an actual contraction of the 
ventricle, reflected by the BCG. Measuring HR, either 
way, results in a similar IBI series. However when the R-J 
interval undergoes physiological-induced changes, it can 
generate slight differences between compared IBIs [6]. 
This upper limit to the similarity between IBI derived by a 
BCG signal and IBI derived by an ECG signal, and it can 
partly explain the differences shown in the results section.  

We believe that the suggested algorithms can be further 
improved in the future to provide more accurate IBI results 
and statistics harming the real-time capabilities of the 
suggested algorithms.  
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