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Abstract

Our goal is to characterize the effects of pos-
ture—supine, seated, and standing—on the seismocardio-
gram (SCG) signal for patients with heart failure (HF).
Posture can (1) distort the SCG signal, for example due
to altering the body’s mechanical vibration response, and
(2) affect a person’s cardiovascular physiology, for exam-
ple due to changes in venous return. This work focuses on
characterizing the former, such that in future studies we
can use the SCG to assess physiological changes in pa-
tients with HF at home. Our team has developed a circu-
lar patch (7 cm in diameter) which, when placed on the
sternum, simultaneously measures the electrocardiogram
(ECG) along with SCG signals in the dorso-ventral and
head-to-foot directions. We recruited six HF patients thus
far for this ongoing study. Each subject was asked to lie
down in a supine position on a patient bed for 1 minute
followed by 1 minute in each of the seated and standing
postures. A novel algorithm was implemented to compare
distortion in the shape of the SCG signals in the supine and
seated postures as compared to the standing upright pos-
ture. The frequency domain analysis of the SCG signals re-
vealed presence of high energy in bands greater than 8 Hz
for supine and seated postures. Based on the findings of
this paper, features can be derived to correct for posture
related changes in the measured SCG signals for accurate
assessment of patients with HF at home.

1. Introduction

Heart failure (HF) is a progressive disorder in which the
heart cannot maintain an adequate supply of blood to all
organs of the body. It is mainly associated with a weak-
ened myocardium with decreased contractility. Currently,
5.7 million adults in the United States have heart failure
with an associated annual health care cost of $30.7 billion
[1]. Re-admission rates to the hospital after a discharge

for HF are 25% within the first 30 days and 45% at 6
months [2]. Continuous monitoring at home can improve
the quality of life for patients with HF and can enable early
detection of worsening condition. However, a thorough
assessment requires information about both the electro-
physiological and mechanical health of the heart. The lat-
ter cannot be provided by existing Holter-based electrocar-
diogram (ECG) measurement devices [3].

Ballistocardiography (BCG), a measure of the reac-
tionary forces of the body in response to aortic ejection of
blood, has re-emerged as a viable methodology for mon-
itoring the mechanical aspects of cardiovascular diseases
(CVDs) in non-clinical settings [4]. Recent research has
shown that the BCG signal can be used to estimate systolic
time intervals (STIs)—pre-ejection period (PEP) and left-
ventricular ejection time (LVET)—leading to in-depth as-
sessment of left ventricular health [5]. A number of unob-
trusive devices, which include modified bathroom-scales,
beds, chairs, accelerometer based straps or patches, have
been designed for measuring BCG signals from different
locations on the body [4]. The nature of the body vibra-
tions measured depend on the type and position of the sen-
sor. Specifically, a wearable tri-axial accelerometer placed
on the sternum can measure chest vibrations, called seis-
mocardiogram (SCG), caused by both the flow of the blood
in the vasculature and the closure of heart halves [6].

A major limitation in the use of BCG / SCG based sen-
sors for home monitoring of CVDs is the fact that these
cardiogenic vibrations are very sensitive to motion and
postural artifacts [7]. Most of the studies with wearable
SCG sensors focus on upright standing postures. However,
some subjects cannot stand in an upright posture and might
require measurements to be taken in supine or seated pos-
tures. These postures may not only affect the cardiovas-
cular physiology but also add considerable artifacts to the
SCG signal. Hence, it is important to analyze the effect of
posture on the measured signals and identify features that
can be used to differentiate posture related changes in the
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Figure 1. (a) Block diagram for the setup. The data was collected from subjects with HF in supine, seated and standing
postures. (b) The acceleration signals across the 3 axes for a subject in all the three postures.

SCG signal from those caused by changes in physiology.
In this paper, we process and analyze sternal accelera-

tion signals from a wearable patch in three different pos-
tures from patients with HF. Specifically, we analyze the
power spectral density (PSD) estimates of the SCG signals
along all three axes to assess frequency dependent changes
in the signals in different postures. We also implement
a novel algorithm to estimate the change in shape of the
acceleration signals in the supine and seated postures as
compared to the upright standing posture.

2. Methods

2.1. Data & Protocol

The data for the experiment was collected from six pa-
tients with HF at the University of California, San Fran-
cisco, under an Institutional Review Board (IRB) approved
protocol. Each subject was asked to wear a circular patch
for SCG and ECG measurements and lay down on a patient
bed in a supine position for 1-minute. This was followed
by 1-minute each in an upright seated and standing posture
as shown in Fig. 1 (a).

2.2. Hardware & Data Pre-processing

The ECG and sternal acceleration signals (3-axis, as
shown in Fig. 1 (b)) in all three postures from each
subject were collected with a novel wearable patch [8]
as shown in Fig. 2 (a). The wearable patch housed an
ATMEGA1284P microcontroller (Atmel Corporation, San
Jose, CA) and recorded data onto a micro Secure Digital
(micro-SD) card (shown in Fig. 2 (b)). The ECG sen-
sor in the patch used an analog-front-end integrated circuit
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Figure 2. (a) Wearable patch (7 cm in diameter) for mea-
suring ECG and SCG signals. (b) Internal electronics in
the patch. (c) The patch is adhered to the sternum with
3 pre-gelled electrodes. (d) Schematic of the tri-axial ac-
celerometer showing different axes.

with an on-board analog-to-digital converter (ADS1291,
Texas Instruments, Dallas, TX) while BMA280 (Bosch
Sensortec GmbH, Reutlingen, Germany) was selected for
the accelerometer. The patch was placed on the sternum of
each subject using three electrodes as shown in Fig. 2 (c).

The ECG and accelerometer signals were band-pass fil-
tered using finite impulse response (FIR) filters (Kaiser
window, cut-off frequencies: 0.8 - 40 Hz for the ECG, and,
0.8 - 35 Hz for the dorso-ventral (D-V) and 0.8 - 20 Hz for
the head-to-foot (H-F) and left-to-right (L-R) components
of acceleration signals) as shown in Fig. 1 (a). The three
axes of the accelerometer are shown in Fig. 2 (d).

2.3. Quantification of Shape Distortion

A novel algorithm was implemented to analyze changes
in the shape of accelerations signals during the supine and
seated postures as compared to the upright standing pos-
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Figure 3. Analyzing the change in shape for the D-V
heartbeats in the 3 postures. (a) The AO-point was detected
in the D-V heartbeats as the global maximum or minimum
with highest absolute amplitude. (b) The heartbeats are
aligned using the location of the AO-point and re-sampling
with cubic interpolation.

ture. Once all the signals were filtered, the R-peaks Ri (i
is the peak index) in the ECG signal were detected with
an automated algorithm. With Ri as reference and l as the
frame size, Ri + l frames, called ‘heartbeats’, were ex-
tracted from the D-V, H-F and L-R signals from each sub-
ject. The frame size l was estimated as the minimum R-R
interval in the ECG for the corresponding posture. The
heartbeats extracted in each posture were averaged to ob-
tain one time-averaged trace for each posture.

The feature corresponding to the opening of the aor-
tic valve (AO-point) in the D-V heartbeat from the stand-
ing upright posture of a subject was detected as the max-
imum or minimum with the highest absolute amplitude
value in the first 200 ms of the heartbeat and its position
was denoted by fo. If the AO-point was detected as the
global minimum in the D-V trace of the standing posture
for a subject, then the AO-point in the supine or seated
postures was also chosen as the global minimum for that
subject. A similar approach was used if the maximum
was selected. After the correct detection of the AO-point
in each posture, only the first fo + α ms frame was ex-
tracted from the heartbeat in each posture (α = 100 ms)
as the first half of the acceleration heartbeat along any
axis has the highest signal-to-noise ratio. Let this ex-
tracted portion be denoted by dk, where k represents pos-
ture (k ∈ [stand, seated, supine]). In order to account
for the change in ECG R-peak-to-fo interval (PEP) in dif-
ferent postures, the dk extracted frames from the seated
and supine postures were aligned with the standing pos-
ture frame using the location of the AO-points as shown in
Fig. 3 (a). Specifically, the portions of the supine or seated
frame before and after the AO-point were re-sampled us-
ing cubic interpolation so the total length of the frame
was equal to that of the corresponding frame in the stand-
ing posture. Once the frames from the supine and seated
postures were aligned with the standing posture signal (as

shown in Fig. 3 (b)), all the signals were standardized by
subtracting the mean and dividing by the standard devia-
tion. The root mean square error (RMSE), was calculated
between the supine and standing posture and also between
seated and standing posture for each subject.

A similar approach was used for the H-F heartbeats and
the L-R heartbeats. However, rather than detecting the AO-
point, the J-peak in the H-F and L-R heartbeats was de-
tected as the highest peak in the first 300 ms portion of the
signal. For the supine and seated postures, the J-peak was
selected as the highest peak 100 ms around the position
of the J-peak in the standing posture for that subject. The
RMSE was calculated for the supine and seated postures
compared to the standing posture for both H-F and L-R
heartbeats for all subjects.

2.4. Frequency Domain Analysis

To analyze the frequency domain difference in the
measured acceleration signals, the Welch’s periodogram
method was used to obtain PSD estimates for D-V, H-F
and L-R signals. However, PSD values were calculated on
the filtered signals and not on the extracted heartbeats. The
PSD estimates were normalized by the maximum value in
the 0-10 Hz band. The mean and standard deviation of
PSD values were calculated for all subjects in the 0-20 Hz
band.

3. Results & Discussion

3.1. Shape Analysis

The shape error for seated and supine positions for all
subjects is summarized in Fig. 4. It can be observed that
the RMSE for the seated posture is smaller for all the axes
of the acceleration signals. The minimum RMSE was ob-
served for D-V heartbeats in the seated posture. It can be
concluded from the results that D-V signals in the seated
posture undergo the least shape distortion as compared
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Figure 4. RMSE results for quantifying shape distortion
in the heartbeats from 3 axes of the accelerometer in the
supine and seated postures.
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Figure 5. Frequency domain analysis. (a) Mean PSD es-
timates for D-V acceleration signals in the three postures.
(b) Mean PSD estimates for H-F acceleration signals in the
three postures. (c) Mean PSD estimates for L-R accelera-
tion signals in the three postures.

to corresponding signals in the upright standing posture.
However, H-F and L-R signals show similar results.

3.2. PSD Based Differences

The initial PSD results indicate that the D-V vibrations
in both the supine and seated positions are accompanied
with an increase in energy in the high frequency band
(greater than 10Hz) as shown in Fig. 5 (a). The H-F
vibrations show increased energy in the 6-12Hz band for
the supine and seated positions. These results are consis-
tent with our previous findings with healthy subjects that
the changes in SCG morphology—specifically, increased
higher frequency vibration modes in addition to the pri-
mary mode in the 1-5 Hz range—are more associated with
body mechanics rather than physiologic changes [9]. The
L-R axis signals, however, do not show increased energy
in higher frequency bands.

4. Conclusion

In this paper, we have presented our initial findings on
how different postures can affect the shape and frequency
content of SCG signals of patients with HF. The results in-
dicate that features can be extracted from the SCG signals
to assess changes in posture. Our future work will focus
on correcting for these changes and analyzing the postural
effects on the physiology of patients with HF at home.
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