Sparse Coding of Cardiac Signals for Automated Component Selection after
Blind Source Separation

D Wedekind!, D Kleyko?, E Osipov?, H Malberg!, S Zaunseder!, U Wiklund?

! Institute of Biomedical Engineering, TU Dresden, Dresden, Germany
2 Department of Computer Science, Electrical and Space Engineering, Luled University of
Technology, Lulea, Sweden
3 Department of Biomedical Engineering & Informatics, Umed University, Umed, Sweden

Abstract

Wearable sensor technology like textile electrodes pro-
vides novel ambulatory health monitoring solutions but
most often goes along with low signal quality. Blind
Source Separation (BSS) is capable of extracting the
Electrocardiogram (ECG) out of heavily distorted multi-
channel recordings. However, permutation indeterminacy
has to be solved, i.e. the automated selection of the desired
BSS output. To that end we propose to exploit the sparsity
of the ECG modeled as a spike train of successive heart-
beats. A binary code derived from a two-item dictionary
{peak, no peak} and physiological a-priori information
temporally represents every BSS output component. The
(best) ECG component is automatically selected based on
a modified Hamming distance comparing the components’
code with the expected code behavior.

Non-standard ECG recordings from ten healthy sub-
Jjects performing common motions while wearing a sen-
sor garment were subsequently processed in 10 s seg-
ments with spatio-temporal BSS. Our sparsity-based se-
lection RCODE achieved 98.1% heart beat detection ac-
curacy (ACC) by selecting a single component each af-
ter BSS. Traditional component selection based on higher-
order statistics (e.g. skewness) achieved only 67.6% ACC.

1. Introduction

Ambulatory vital sign recording supplements the stan-
dard clinical data acquisition by long-term measurements
for early diagnosis of diseases or health and stress mon-
itoring of people performing potentially dangerous tasks.
Using measurement techniques like textile electrodes for
wearable sensing, the recorded electrocardiogram (ECG)
is of non-standard nature compared to its clinical coun-
terpart. Moreover, the minimal-conductive measurement
principle which allows for a flexible health monitoring is
also strongly affected by movement artifacts [1].
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Blind Source Separation (BSS) is a signal processing
technique capable of separating signal mixtures (e.g. mix-
tures of ECG and distortions) into its constituting compo-
nents [2]. Spatio-temporal Independent Component Anal-
ysis (ICA) based on the FastICA algorithm [2] is one real-
ization of BSS which has shown a superior performance on
wearable data compared to the standard ICA [1]. Despite
its ability to separate ECG from distortions, ICA is typi-
cally only solved up to a permutation (i.e. separated com-
ponents are available but the output is mostly unordered).
Accordingly, a desired output component (e.g. the one
best representing the ECG) has to be automatically se-
lected. This selection gains special interest while process-
ing a large number of channels. This is typical for am-
bulatory multi-channel health recordings and particularly
spatio-temporal ICA which adds extra channels during the
processing [3].

Two principles for handling permutation indeterminacy
have been proposed in the context of ECG processing. The
first principle identifies and discards the undesired com-
ponents (i.e. artifacts) thus indirectly obtaining the ECG
component. A combination of second-order and higher-
order statistics was used for that purpose in [4] whereas
auto-correlative periodicity manifestation was exploited in
[5]. Feature decision trees were used to classify artifacts
in [6]. The second approach aims at directly identifying
the desired component (i.e. the ECG). Again, higher-order
statistics have been utilized in [1,7]. Moreover, template
matching was applied in [8]. The morphological nature
and periodicity of QRS waveforms of the ECG were ex-
ploited for instance in [9, 10]. A combination of both ap-
proaches, primarily sorting out undesired BSS components
and further selecting the (best) ECG component among the
residual channels, each utilizing frequency characteristics,
was proposed by our group earlier in [3]. Besides these
existing diversified approaches to component selection, an
evaluation of their actual selection performance (like in
[3, 11]) is rare. This study proposes a new approach to
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Figure 1. Input data example with heavy distortions and
a large motion artifact. REF indicates the conductive ref-
erence ECG and CH1-7 the ECG leads derived from the
textile electrodes.

solve the permutation indeterminacy problem including its
performance assessment on real data.

Our novel approach aims at directly identifying ECG
components in BSS outputs based on a sparse represen-
tation of each component. The sparse code itself thereby
features QRS waveforms and their temporal behavior, ex-
pressed in “spike trains” typical for spatio-temporal BSS
on ECG [1]. A comparison is also made with other fre-
quently applied methods which are based on higher-order
statistics.

2. Material and Methods

2.1. Wearable Dataset and Processing

We analyzed recordings from ten healthy subjects wear-
ing a garment with integrated textile electrodes [1] while
performing a protocol of motions (standing up, sitting
down, walking, flexing chest muscles). Seven ECG leads
obtained from the garment (sampling rate 500 Hz) were
processed in subsequent 10 s segments (1 s segment
shift). A total of (mean + standard deviation) 213 =+
8 segments per subject were considered. A reference
ECG recorded simultaneously using conductive electrodes
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Figure 2. Spatio-temporal BSS output components (ex-
cerpt) of the input signals from Fig. 1. Components are
vertically ordered according to skewness. Modified Ham-
ming distance dy as well as the sparse code sequence
of each output component are shown in grey bars. The
RCODE selection is marked orange.

served as ground truth. See Figure 1 for a data example
including a large motion artifact. Spatio-temporal BSS us-
ing FastICA algorithm with skewness maximization and
ten added time lags (k € [0, 10]) [3] was applied to the
seven textile ECG leads which resulted in a total of 77 out-
put components per segment. See Figure 2 for an output
component excerpt according to the input data shown in
Figure 1.

2.2. Output Component Selection

Our component selection RCODE consists of three ma-
jor processing steps: 1) detection of peaks in the output
components; 2) coding of the temporal behavior of the
peaks of each component; and 3) assessing the compo-
nents’ code for selection of one single component.

The key target for the peak detection is to allow for a
sensitive subsequent coding, thus achieving a balance be-
tween sensitivity to distortions while maintaining the abil-
ity to detect peaks in the presence of distortions. The ba-
sic processing steps are indicated in Figure 3. An enve-
lope (ENV) is calculated for each component (BSS) us-
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Figure 3. Data processing steps prior to the coding.
Spatio-temporal BSS output channel (BSS) including its
envelope (orange) and the lowpass-filtered (green) enve-
lope (ENV), the extracted signal (EXT) and its integrated
version (MOV) including the threshold (black line) and
peak detections (black o).

ing Hilbert transformation. A new signal (EXT) is formed
by extracting the signal content above the lowpass-filtered
(0.5 Hz 5th-order Butterworth) envelope. This intends to
match peak heights between areas with and without distor-
tion. Peaks are further consolidated by moving window in-
tegration (MOV) using a 100 ms Hamming window (con-
sidered as QRS length [12]). Finally, peaks are detected
by applying thresholding using an inversely exponentially
weighted average (see black line) on MOV.

The sparse representation of each component’s peak de-
tections at times ¢; (¢ € [1,I], I is the number of peak
detections) is obtained by coding according to the dictio-
nary {peak - 1, no peak - 0} together with temporal a-
priori information. The cardiac refractory period Atg is
considered as 0.3 s [10], whereas the maximum peak-to-
peak distance At,,,, is considered as 1.5 s (i.e. a mini-
mum heart rate of 45 bpm [13]). Accordingly, a sequence
(x) € {0,1} is obtained by:

1. (x;) =1withi € [1,]]
add [(t;41 — t;)/Atimas | zeros between x; and x4
if tig1 —t; > Atgr

3. add [(t1)/Atmas | zerosto (x) att < ty

4. add [(10 — t1)/Atmaz] zeros to (x) att >ty

The sequence () of final length L is further assessed by a
modified Hamming distance measure dg.

dp is designed to indicate the distance from the ex-
pected code behavior assuming a perfect ECG component

with code (z) = 1,0,1,0,... or () = 0,1,0,1..., re-
spectively. It is constituted by two factors:

dH = Wq 'dm (1)

where d; is a distance to the expected behavior assess-
ing only pairs of two subsequent code elements (x;, z; 1)
each. It is defined by the ratio between the amount of non-
desired code pairs (0,0) or (1,1) and the total amount of
code pairs

H(@i, wis1)|(@i, wig1) = (0,0) U (1, 1)}
L—-1

dip = 2
withi € [1,L — 1].

wq weights this distance regarding the length of the
longest continuous sequence (z;, Tit1,...) C (x) of ex-
pected ECG code behavior where all pairs of subsequent
code elements (x;,z;+1) = (1,0) U (0,1) . Accordingly,

Lo
wa=1-—+"— 3)
where [;( is the length of that longest continuous se-
quence of the respective (z). If I = 1, dy is set to 1. Ex-
amples of code sequences () and derived distance mea-
sures dg can be seen in Figure 2.

The component with the minimal dg is selected as
RCODE output. In the case of obtaining multiple com-
ponents with equal minimum dy, maximum kurtosis of
components’ derivative is used to select among them.

In order to compare the traditional component selection
based on higher-order statistics [1,4,7], we also used skew-
ness for an automated component selection. Since higher-
order statistics are prone to outliers, an outlier-removal us-
ing Walsh’s non-parametric outlier test [14] was performed
on each component prior to selecting the component with
the highest skewness (SKEW).

3. Results

The performance was evaluated by the heart beat de-
tection accuracy (ACC) [3] obtained by comparing the
manual QRS annotations from the reference ECG with
the QRS detections using a modified maximum search de-
tector [15]. Figure 4 shows the according boxplots of
subject-wise averaged ACC results. The input data qual-
ity was described by averaging the ACC for all seven in-
put channels which gave 69.3 £ 14.2 % (IN). The up-
per performance limit of a channel selection after BSS
was given by manually selecting always the component
with the highest ACC which served 99.5 £ 0.8 % (BEST
OUT). The newly proposed automated single channel se-
lection RCODE achieved 98.1 + 1.7 % whereas the usage
of higher-order statistics in terms of the outlier-adjusted
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Figure 4. Boxplots showing subject-wise (N = 10) aver-
aged heart beat detection accuracy ACC in %. Shown are
the average input ACC (IN) of seven wearable ECG leads,
the manually selected best possible output ACC (BEST
OUT) after BSS as well the automated selections RCODE
and SKEW. Outliers (o) defined as values exceeding the
maximum whisker length (1.5 - interquartile range).

skewness (SKEW) only reached 67.6 &+ 16.4 %. As shown
by the skewness ordering in Figure 2, the outlier-adjusted
skewness failed to serve as a robust selector (by select-
ing the component with the maximum skewness SKEW)
in the presence of components with distortions. Accord-
ingly, selecting the spatio-temporal BSS output component
based on the sparse representation outperformed the tradi-
tional method based on higher-order statistics. Moreover,
RCODE performed close to the upper selection limit in
this particular dataset which will be verified on extended
measurements in our future work.
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