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Abstract 

Aims: According to the “2016 Physionet/CinC 

Challenge”, we propose an automated method identifying 

normal or abnormal phonocardiogram recordings. 

Method: Invalid data segments are detected 

(saturation, blank and noise tests). The record is 

transformed into amplitude envelopes in five frequency 

bands. Systole duration and RR estimations are 

computed; 15-90 Hz amplitude envelope and systole/RR 

estimations are used for detection of the first and second 

heart sound (S1 and S2). Features from accumulated 

areas surrounding S1 and S2 as well as features from the 

whole recordings were extracted and used for training. 

During the training process, we collected probability and 

weight values of each feature in multiple ranges. For 

feature selection and optimization tasks, we developed C# 

application PROBAfind, able to generate the resultant 

Matlab code.  

Results: The method was trained with 3153 Physionet 

Challenge recordings (length 8-60 seconds; 6 databases). 

The results of the training set show the sensitivity, 

specificity and score of 0.93, 0.97 and 0.95, respectively. 

The method was evaluated on a hidden Challenge dataset 

with sensitivity and specificity of 0.77 and 0.91, 

respectively. These results led to an overall score of 0.84. 

1. Introduction

This paper describes a method for automated 

discrimination of normal and abnormal heart sounds, 

according to Physionet Challenge 2016 [1]. The presented 

method introduces a probability assessment from multiple 

features. The used features are mostly derived from the 

accumulated systole and diastole area. Moreover, some 

features are independent of heart sounds detection. 

2. Method

The workflow of the method is presented in Fig. 1. It 

consists of the generation of amplitude envelopes in 5 

frequency bands, detection of invalid areas, detection of 

heart sounds S1 and S2, extracting features, limit test and 

computing and comparing the resultant probability. 

Figure 1. Flowchart of presented method 

2.1. Pre-processing 

Five amplitude envelopes are generated from the input 

wave file (sampling at 2 kHz) using Hilbert and Fourier 

transformations. The generated envelopes use the bands 

15-90 Hz (LF), 55-150 Hz (MF), 100-250 Hz (HF), 200-

450 Hz (SF) and 400-800 Hz (UF). All generated 

envelopes and source signal are down-sampled to 1 kHz 

(Fig. 1A). The LF envelope is used in S1 and S2 
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detection; the EF and LF ratio is used for invalid area 

detection. The LF, MF, HF, UF and SF envelopes (Fig. 2) 

are used in the limits check and probability assessment 

solver.  

Figure 2. Abnormal heart sounds (record a0033.wav) and 

computed amplitude envelopes (smoothed with LP filter). 

S1 and S2 are the first and the second heart sound, 

respectively. M is audible murmur, visible in the two 

highest frequency bands SF and UF. The image was 

rendered using SignalPlant software [2]. 

2.2 Detection of invalid areas 

Invalid areas are detected in a 1 s moving window with 

a 0.5 s step (Fig. 1B). A histogram (10 bins) from the raw 

signal is made. If the histogram leads to a non-usual 

signal distribution (based on [3]) or the sum of the HF 

envelope is higher than the sum of the LF envelope, the 

block is marked as “invalid”. 

2.3. S1 and S2 heart sound detection 

Prior to the heart sound detection, an estimation of the 

systole duration and RR interval is made. Systole duration 

estimation SDE (Fig. 3A) uses the LF amplitude envelope. 

Peaks are detected (threshold 74
th
 percentile, minimal 

peak distance 175 ms) and a histogram of their distances 

is built. Due to the low variability of the systole duration, 

the most common bin in the histogram should lead to 

systole duration. RR estimation (RRE) is based on 

autocorrelation of the LF envelope (Fig. 3B). In the 

resultant autocorrelation function peaks are found 

(threshold 80
th

 percentile, min. peak distance 300 ms). 

Peak differences are collected (excluding non-

physiological RR distances) and the RR interval is 

computed as a median of the peak distances. In case of 

fewer than 3 distances, the estimated RR interval is 

computed as 2.8 x SDE. The RR to systole ratio is 

compared (Fig. 3C) to the limits (> 2.1; < 4.5). If it does 

not pass, the SDE or RRE is corrected. The heart sound 

extraction block (Fig. 3D) searches in peaks derived from 

the LF envelope and finds S1 and S2 pair locations. If the 

number of resultant pairs is lower than 2, the process is 

aborted (Fig. 3E).  

Figure 3. Flowchart of proposed heart sound detector. 

Averaged shapes of systole and diastole area are 

generated in each of the used frequency bands (Fig. 3F).  

These averaged shapes are intended for feature 

collection as well as for missing S1/S2 detection check. If 

any S2-S1 interval (i.e. diastole) is longer than 1.8 s (Fig. 

3G), the LF average shape of the S1-S2 area is used to 

find missing heart sounds with correlation (threshold 0.8). 

 

 

  



2.4. Investigated features 

We extracted 215 features for further investigation. 

These features were statistical properties of segments of 

averaged heart sound envelopes in several time segments 

(before S1, at S1, after S1, before S2, at S2, after S2 and 

diastole) in five frequency ranges. The ratios between 

those properties were also used.  

Moreover, we generated features independent of 

detection of S1 and S2. We tested the skewness and 

kurtosis of all the generated envelopes. We also designed 

a transformation reacting to continuous blocks of a 

similar sound:  

𝐶𝑆𝑖 = 𝐿𝑜𝑔 (𝐶𝑜𝑟𝑟(𝐹𝐹𝑇𝑖 , 𝐹𝐹𝑇𝑖−𝑠𝑡𝑒𝑝) ×∑𝐹𝐹𝑇𝑖)

where FFTi is the absolute value of the Fast Fourier 

transform (window 128 ms) following a sample with 

index i. This transformation is able to reveal murmurs, as 

shown in Fig. 4.  

Figure 4. CS transformation of a signals containing 

normal and abnormal heart sounds. It positively reacts to 

continuous sounds of a similar frequency image, 

revealing murmurs. 

2.5. Limit test – preliminary classification 

Some of the extracted features were used for the raw 

classification of normal (abnormal) sounds (Fig. 1E). 

Feature thresholds were set to separate only normal (resp. 

abnormal) records from the rest. If this limit test points to 

normality (abnormality), further processing is skipped. 

 Table 1 shows the number of futures used for the limit 

test and its ability to reveal normal and abnormal sounds 

for each tested dataset. 

Table 1. Count of features used for the preliminary 

classification of normal (NPN) and abnormal (NPA) sounds 

in each dataset. No false negative detection was allowed 

during training. N (A) is the relative number of normal 

(abnormal) sounds in the dataset. All (1) features were 

independent on heart sounds detection, while All (2) used 

them. Datasets A and F were excluded due to their 

absence in test set; C was excluded because it can be 

divided using only one parameter. 

Dataset NPN % of N NPA % of A 

All (1) 2 40% 1 17% 

All (2) 4 33% 7 16% 

B 4 16% 3 16% 

D 2 54% 4 25% 

E 3 96% 5 66% 

2.6. Training - probability assessment solver 

Because no single feature (except dataset C) could be 

used for a reliable division into normal and abnormal 

sounds, multiple features were used for each dataset. 

Multiple features usually lead to machine learning 

methods such as neural networks [4] or supported vector 

machines [5]. Contrary to these standard approaches, we 

decided to design a new method using the probability of a 

normal/abnormal sound in single sections in each feature.  

Figure 5. Example of two features (dataset E). Left – 

standard deviation of skewness of averaged S1 

surroundings in the SF frequency band, right – skewness 

of the record HF amplitude envelope. Blue - occurrence 

of normal sounds, red - occurrence of abnormal sounds, 

black - weight, green – normal sound probability.  

For each feature, two histograms (20 bins) were built 

for the normal/abnormal values (Fig. 5). The weight of 

each histogram bin was computed as the ratio between 

normal and abnormal occurrences in the bin to the total 

number of subjects. The resultant probability is 

transformed with the sigmoid function and added to the 

probability from the other parameters (Fig. 1F). The 

summed probability is compared to the manually selected 

 

 

  



threshold (Fig. 1G) leading to a final statement about 

heart-sounds normality. For the inspection and 

automatized feature selection process, we built 

PROBAfind software (http://medisig.com/probafind). It 

also allows interactive setting of the sensitivity/specificity 

ratio and generates a Matlab code for challenge entry. 

2.7. Probability assessment - selected features 

Due to the different behaviour of the same features in 

different datasets (containing same pathology, as in Fig. 

6) we decided to build separate feature set for each

dataset. For test-only datasets G and I, general feature set 

was built. Features were selected semi-automatically 

using PROBAfind software. Table 2 shows the number of 

used features and the strongest feature for the training 

datasets. Dataset C (containing mitral regurgitation and 

mitral stenosis) was not subjected to the probability 

assessment; it can be divided using just one parameter.  

Table 2. Selected features for training datasets. N shows 

the total number of selected features for each dataset. 

“Other” is general dataset in case that the dataset is not 

known or cannot be identified. Dataset C does not use 

probability assessment, it uses simple comparison instead. 

Set N The strongest feature 

A 13 Diastole value in UF to LF ratio (median) 

B 11 Ratio between value in S1 to after-S1 area 

in accumulated LF (median) 

C* 1 Skewness of accumulated S2 in HF 

D 2 Ratio between value in S1 to after S1 area 

in accumulated LF 

E 4 Skewness of accumulated S1 in UF 

F 7 Mean of accumulated area after S2 in LF 

Other 13 Skewness of accumulated S1 in UF 

Figure 6. Feature heterogeneity in datasets B and E with 

coronary artery disease (CDA). Presented features (SK-

S1-SF - skewness of accumulated S1 area in SF band; 

DM-EM-SF - ratio between S2 and the preceding area in 

the SF band) separate healthy subjects (H) from CDA 

patients (A) in dataset E. The same parameters are less 

usable in dataset B. 

3. Results and conclusion

The training and testing results are presented in Table 

3. Testing was carried out on a hidden test set. The

presented method consumed 5.11% (average per record) 

of instructions allowed.   

Table 3. Training and testing results. N – number of 

records, Se – sensitivity, Sp – specificity. 

Dataset N Se Sp Score 

Training set 3153 0.93 0.97 0.95 

Test set (hidden) 500 0.77 0.91 0.84 

An approach for the automated detection of 

normal/abnormal heart sounds using a probability 

assessment was introduced. We also proposed features 

independent of heart sound detection, which may be 

suitable for hardware implementation.  
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