
Heart Sound Classification via Sparse Coding

Bradley M Whitaker1 and David V Anderson1

1 Department of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Introduction: The aim of the Physionet/CinC Challenge
2016 is to automatically classify heart sound recordings
as normal or abnormal. The Challenge provides 3,153 la-
beled audio recordings taken from a single precordial lo-
cation, as well as Springer’s state-of-the-art beat segmen-
tation algorithm.

Algorithm: Using Springer’s segmentation algorithm,
we divide each audio segment into an array of sub-second
audio files corresponding to the four phases of the cardiac
cycle. We take an N-point FFT of each audio segment and
create five different data matrices: one for each sub-cycle
(S1, Systole, S2, and Diastole), and one for a complete car-
diac cycle. A column of the data matrix corresponds to the
N-point FFT of one audio segment. Using sparse coding,
we decompose the data matrix into a dictionary matrix and
a sparse coefficient matrix. The dictionary matrix repre-
sents statistically important spectral features of the audio
segments. The sparse coefficient matrix is a mapping that
represents which features are used by each segment. Work-
ing in the sparse domain, we train support vector machines
(SVMs) for each sub-cycle and for the complete cycle. We
train a sixth SVM to combine the results from the prelimi-
nary SVMs into a single binary label for the entire sound
recording.

Results: Our algorithm achieves a cross-validation
score of 0.8652 (Se=0.8669 and Sp=0.8634). The best
unofficial score when tested on a subset of the unknown
challenge data is 0.812 (Se=0.825 and Sp=0.799).

Conclusions: We developed an algorithm to classify
heart sound recordings as normal or pathological. Our re-
sults show that sparse coding is an effective way to define
spectral features of the cardiac cycle and its sub-cycles for
the purpose of classification. Further work will attempt to
increase the sensitivity and specificity of the algorithm by
exploring other classifiers while still working in the sparse
domain.

1. Introduction

This work describes the solution of our entry in the
2016 Physionet/CinC Challenge. The goal of the Chal-

lenge was to accurately classify normal and abnormal
heart sound recordings. The Challenge details can be
found at https://physionet.org/challenge/
2016/. The database we used in conjunction with the
challenge is described in detail in [1].

The novelty of our solution and the focus of this paper
relates to using sparse coding as a tool for performing un-
supervised feature extraction. Using sparse coding in im-
age and audio classification tasks is an active research area
[2–9]. Our own previous work has found success in sparse-
domain classification tasks using Support Vector Machines
(SVMs) [10].

2. Algorithm

2.1. Audio Preprocessing

Prior to extracting features and learning a classifier,
we preprocessed the audio data by segmenting the heart
sounds and converting the data into the frequency domain.
Fig. 1 offers a visual representation of the preprocessing
steps.

Segmenting a PCG into periods is fundamental in the
automated analysis of heard sounds [11]. As the first
step of our algorithm we utilized Springer’s state-of-the-art
segmentation code, which was provided by the Challenge
[12], to separate each audio file into five arrays of smaller
audio segments. The first array contained a list of all S1
sounds present in the audio. The second, third, and fourth
arrays contained all of the systole, S2, and diastole sounds,
respectively. The fifth array contained copies of the full
heart cycles, starting with S1.

The next step in preprocessing the audio was to con-
vert each sound segment from the time domain to the fre-
quency domain with an N-point FFT. (The value of N was
determined by looking at the maximum lengths of the seg-
mented heart sounds. We selected N to be 364, 1024, 324,
2048, and 3760 for S1, systole, S2, diastole, and the full
cycle, respectively. At the 2 kHz sampling frequency of
the provided PCGs, these N-values correspond to 182ms,
512ms, 162ms, 1.024 s, and 1.88 s, respectively.) After
calculating the FFT of each segment, we discarded the
phase information and half of the (symmetric) magnitude
information to reduce computational complexity.

Computing in Cardiology 2016; VOL 43 ISSN: 2325-887X DOI:10.22489/CinC.2016.234-191

Audio PCG Signal

Segmented Audio

S1:
systole:

diastole:
S2:

cycle:

,
,

,
,

,

,
,

,
,

,

,
,

,
,

,

. . .

. . .

. . .

. . .

. . .

,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

. . .

. . .

. . .

. . .

. . .

S1:
systole:

diastole:
S2:

cycle:

Segment FFTs

Figure 1. Visual representation of preprocessing applied
to one PCG file. The preprocessing converts an audio file
in the time domain into five arrays of frequency informa-
tion, grouped by segmented heart sounds.

2.2. Sparse Coding as Unsupervised Fea-
ture Extraction

After preprocessing the PCG data, we randomly se-
lected 1,000 of the 3,153 provided files from which to learn
features. We used these training files to create five data ma-
trices. The columns of the first data matrix were the pre-
processed S1 segments. Likewise, the systole, S2, diastole,
and full-cycle segments made up the columns for the other
data matrices. We then applied sparse coding on these data
matrices as a form of unsupervised feature extraction.

The goal of sparse coding is to decompose a data ma-
trix (Y) into the product of a dictionary matrix (D) and a
sparse coefficient matrix (X):

Y = DX. (1)

Each column of Y represents a data sample, which in our
case is the N-point FFT of a single subsegment of PCG
audio. The dictionary matrix, D, can be thought of as a set
of commonly-occurring features learned from the training
data. Fig. 2 gives a visual representation of Eq. 1.

Mathematically, performing this matrix decomposition

Figure 2. Visual representation of sparse coding. The fea-
ture matrix (left) is factored into the product of a dictionary
matrix (center) and a sparse coefficient matrix (right).

corresponds to solving the following minimization prob-
lem [13, 14]:

min
D∈C,{xm}

1

M

M∑
m=1

1

2
‖ym −Dxm‖22 + λ ‖xm‖0 . (2)

In this equation, each ym corresponds to a column of Y
and each xm corresponds to a column of X. We jointly
learn the dictionary matrix and the sparse coefficient vec-
tors. We constrain the dictionary to C, the set of matrices
whose columns have `2-norm less than one. This prevents
the dictionary from growing arbitrarily large, which would
remove the effect of the `0 term in the objective function.
The λ term is a fidelity-sparsity tradeoff parameter.

Unfortunately, the minimization program in Eq. 2 is a
non-convex, NP-hard problem [15]. However, there are
ways to approximate it and come up with workable solu-
tions. One such method is to relax the `0-“norm” to the
`1-norm and alternate solving for D and X while keeping
the other constant. These relaxations result in the Alternat-
ing Minimization Algorithm, outlined in Alg. 1 [16, 17].

In our implementation of Alg. 1, we chose to update the
dictionary (Line 8) using gradient descent, following the
method reported in [8]. Line 5 of the algorithm is known
in the literature as ‘basis pursuit denoising’ [18]. This is
a well-studied problem, and we chose to solve it using the
software package l1 ls, developed by Koh, et. al. [19].

The intuition behind using sparse coding as a feature
extraction tool is that each column of the learned coeffi-
cient matrix defines how much of each dictionary element
(feature) is needed to reconstruct the respective column of
the data matrix. Because the coefficient vectors are con-
strained to be sparse, most coefficients will be zero. Ide-
ally, the trained dictionary will have some elements that
correspond to normal heart sounds and other elements that
correspond to abnormal heart sounds.

Algorithm 1 Alternating Minimization.
Require: Signals {ym ∈ RN}m=1,...,M, initial dictionary

D0 ∈ C, regularization term λ, number of iterations K

1: Initialize D← D0

2: for k = 1, ...,K do
3: for several m ∈ {1, ...,M} (in parallel) do
4: Calculate coefficient vectors:

5: xm = argmin
x

1

2
‖ym −Dx‖22 + λ ‖x‖1

6: end for
7: Update dictionary:

8: D = argmin
D∈C

1

M

M∑
m=1

1

2
‖ym −Dxm‖22

9: end for
10: return D

Applying sparse coding on the data matrices resulted
in five different dictionaries. Each dictionary represents
commonly-occurring spectral features present in the pre-
processed S1, systole, S2, diastole, and full-cycle seg-
ments. Using these dictionaries, we computed sparse co-
efficient vectors for each segment of each file. We then av-
eraged the coefficient vectors in each file. After this step,
each PCG signal is represented by five sparse coefficient
vectors.

2.3. Classification

We used the coefficient vectors from the unused 2,153
files to learn cross-validated SVM classifiers for each seg-
ment type (S1, systole, S2, diastole, and full cycle). We
used the libsvm software package to learn the SVMs
[20], we chose to train the SVMs using a first-order poly-
nomial kernel, and we tuned the other SVM parameters
using the modified cuckoo search algorithm [21]. We used
the soft-margin output scores from these SVMs to train a
final SVM that classified the PCG file to a single binary
label.

Learning the five sparse coding dictionaries and the six
SVMs was done offline. When we receive a new PCG
file to test, we follow the same preprocessing procedure
and then learn the sparse coefficient vectors using the ap-
propriate dictionaries. After averaging the sparse vectors
across the file, we generate five soft-margin scores using
the segment-specific SVMs. These five scores are com-
bined into a single label using the sixth SVM, resulting in
a final answer for the new file.

3. Results

The best cross-validation score for the 2,153 files used
to train the SVMs was 0.8652. The sensitivity was 0.8669

and the specificity was 0.8634. Previous attempts had
cross-validation or holdout scores ranging from 0.82 to
0.86, but when tested on a subset of the unknown challenge
data produced a high score of 0.812 (Se=0.825, Sp=0.799).

The average running time of our algorithm on the train-
ing set used 11.4% of the quota (≈ 1.71 × 1010 instruc-
tions). This takes about 3 seconds to run using MAT-
LAB R2016a on a quad-core i7 processor clocked at 3.4
GHz with 16 GB RAM. The maximum running time used
41.0% of the quota.

4. Conclusion

The main contribution of this paper is to show that
sparse coding can be used as a tool for unsupervised fea-
ture extraction. These features could possibly be com-
bined with other features that are known to work well in
heart sound classification tasks. In addition, the features
could be used by different types of classifiers (not limited
to SVMs) to improve accuracy.

Acknowledgments

In addition to thanking the Challenge organizers, the au-
thors wish to thank Paul Chamberlain, a medical student at
Baylor College of Medicine, for helpful conversations in
conjunction with this paper.

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship
under Grant No. DGE-1148903.

References

[1] Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ,
Castells F, Roig JM, Silva I, Johnson AE, Syed Z, Schmidt
SE, Papadaniil CD, Hadjileontiadis L, Naseri H, Mouka-
dem A, Dieterlen A, Brandt C, Tang H, Samieinasab M,
Samieinasab MR, Sameni R, Mark RG, Clifford GD. An
open access database for the evaluation of heart sound al-
gorithms. Physiological Measurement 2016;37(9).

[2] Huang K, Aviyente S. Sparse representation for signal clas-
sification. In Advances in neural information processing
systems. 2006; 609–616.

[3] Mairal J, Leordeanu M, Bach F, Hebert M, Ponce J. Dis-
criminative sparse image models for class-specific edge de-
tection and image interpretation. In Forsyth D, Torr P,
Zisserman A (eds.), Computer Vision ECCV 2008, vol-
ume 5304 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg. ISBN 978-3-540-88689-1, 2008; 43–56.

[4] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust
face recognition via sparse representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence Feb
2009;31(2):210–227. ISSN 0162-8828.

[5] Elad M, Figueiredo MA, Ma Y. On the role of sparse and re-
dundant representations in image processing. Proceedings
of the IEEE 2010;98(6):972–982.

[6] Kavukcuoglu K, Ranzato M, LeCun Y. Fast inference in
sparse coding algorithms with applications to object recog-
nition. arXiv preprint arXiv10103467 2010;.

[7] Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S. Sparse
representation for computer vision and pattern recogni-
tion. Proceedings of the IEEE June 2010;98(6):1031–1044.
ISSN 0018-9219.

[8] Charles AS, Olshausen BA, Rozell CJ. Learning sparse
codes for hyperspectral imagery. Selected Topics in Sig-
nal Processing IEEE Journal of 2011;5(5):963–978. ISSN
1932-4553.

[9] Lee K, Hyung Z, Nam J. Acoustic scene classification using
sparse feature learning and event-based pooling. In Appli-
cations of Signal Processing to Audio and Acoustics (WAS-
PAA), 2013 IEEE Workshop on. IEEE, 2013; 1–4.

[10] Whitaker B, Carroll B, Anderson D. Sparse decomposi-
tion of audio spectrograms for automated disease detection
in chickens. In Proceedings of the IEEE GlobalSIP. IEEE,
2014; 1122–1126.

[11] Schmidt SE, Holst-Hansen C, Graff C, Toft E, Struijk JJ.
Segmentation of heart sound recordings by a duration-
dependent hidden markov model. Physiological Measure-
ment 2010;31(4):513.

[12] Springer DB, Tarassenko L, Clifford GD. Logistic
regression-hsmm-based heart sound segmentation. IEEE
Transactions on Biomedical Engineering April 2016;
63(4):822–832. ISSN 0018-9294.

[13] Olshausen BA, Field DJ. Sparse coding with an overcom-
plete basis set: A strategy employed by v1? Vision research

1997;37(23):3311–3325. ISSN 0042-6989.
[14] Tosic I, Frossard P. Dictionary learning. Signal Process-

ing Magazine IEEE March 2011;28(2):27–38. ISSN 1053-
5888.

[15] Tillmann AM. On the computational intractability of exact
and approximate dictionary learning. IEEE Signal Process-
ing Letters Jan 2015;22(1):45–49. ISSN 1070-9908.

[16] Mairal J, Bach F, Ponce J. Sparse modeling for image and
vision processing. Foundations and Trends in Computer
Graphics and Vision 2014;8(2-3):85–283. ISSN 1572-
2740.

[17] Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding
algorithms. In Schölkopf B, Platt J, Hoffman T (eds.), Ad-
vances in Neural Information Processing Systems 19. MIT
Press, 2007; 801–808.

[18] Chen SS, Donoho DL, Saunders MA. Atomic decomposi-
tion by basis pursuit. SIAM journal on scientific computing
1998;20(1):33–61.

[19] Koh K, Kim SJ, Boyd S. An interior-point method for large-
scale l1-regularized logistic regression. Journal of Machine
learning research 2007;8(7):1519–1555. Software available
at https://stanford.edu/˜boyd/l1_ls/.

[20] Chang CC, Lin CJ. LIBSVM: A library for support vec-
tor machines. ACM Transactions on Intelligent Systems
and Technology 2011;2:27:1–27:27. Software available at
www.csie.ntu.edu.tw/˜cjlin/libsvm.

[21] Walton S, Hassan O, Morgan K, Brown M. Modified
cuckoo search: A new gradient free optimisation algorithm.
Chaos Solitons Fractals 2011;44(9):710 – 718. ISSN 0960-
0779.

	234-191

