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Abstract

Stimulating the development of robust algorithms for the
automated classification of phonocardiograms (PCGs) is
the goal of the PhysioNet/CinC challenge 2016. In this pa-
per, an approach to classify PCGs in the spectral domain is
presented. First, the magnitude spectrogram is calculated.
Next, the spectral shapes of four states of the cardiac cycle
(“S1”,“Systole”, “S2”, “Diastole”) are extracted using
nonnegative matrix factorization, which is initialized with
a time-domain segmentation algorithm. A Random Forest
with 3000 trees is used for classification. Using 10-fold
cross-validation on the unbalanced training data, a mean
sensitivity of 0.92 at a specificity of 0.83 was achieved, re-
sulting in an overall score of 0.88. On the complete hidden
test data, a top score of 0.78 during phase II of the chal-
lenge with a sensitivity of 0.74 and a specificity of 0.83 was
achieved.

1. Introduction

This year’s PhysioNet/CinC challenge aims to stimulate
the development of robust algorithms to accurately clas-
sify heart sound recordings automatically [1, 2]. Several
groups have addressed the problem of frequency-domain
classification of the phonocardiogram (PCG). In Bhatikar
et al. [3], an artificial neural network (ANN) is used to
differentiate between innocent and pathological murmurs
based on spectral information. In their study, manual se-
lection and segmentation of individual heart cycles of ac-
ceptable quality is performed. Sepehri et al. [4] recorded
an Electrocardiogram (ECG) in parallel to the PCG. Five
frequency bands in the systolic segment were identified as
inputs to an ANN. De Vos et al [5] also recorded PCG and
ECG in parallel. The PCG was segmented based on the
ECG recording and an ANN was used for classification.

The algorithm presented in this paper combines
frequency-domain analysis of the PCG with automated
time-domain segmentation [6]. Thus, no signal except the
PCG is necessary for its classification.

2. Materials and Method

An overview of the algorithm is given in Figure 1. The
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Figure 1. Schematic overview of the algorithm. Non-
negative matrix factorization is used to extract the spectral
shapes of the four states of the PCG, which are obtained
using Springer’s segmentation algorithm. A Random For-
est is used to classify the recording.
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PCG is downsampled to 1 kHz and denoted x(n), with n
being the discrete time. Springer’s segmentation algorithm
[6] as provided in the sample code is used to assign the four
states 1=̂“S1”, 2=̂“Systole”, 3=̂“S2”, and 4=̂“Diastole”
to the state vector x(n).

To calculate the spectrogram S(i, ω) of the PCG, the
short term Fourier transform (STFT) is used, in which the
Fourier transform is applied to a moving window of x(n).
Here, i is the index of the window and ω is the respective
frequency bin. To extract the dominant spectral compo-
nents of the four states, nonnegative matrix factorization
(NMF) [7] is used.

NMF approximates a nonnegative matrix X ∈ IRI×Ω
+

by a product of two nonnegative matrices W ∈ IRI×R
+ and

H ∈ IRR×Ω
+ ,

X ≈ X̂ = WH. (1)

R is a user defined parameter which defines the rank of
the approximation X̂ . W and H are calculated iteratively,
minimizing the distance between X and X̂ . When applied
on the magnitude spectrogram, i.e. X = |S|, the rows of
H can be interpreted as R spectral shapes, that are active
at different time instances defined by the R columns of
W . Thus, to estimate the spectral shape of the four states
(“S1”,“Systole”, “S2”, “Diastole”), R was set to four and
W was initialized with the results of the segmentation al-
gorithm.

For machine learning, the ensemble learning method
Random Forest (RF) was used [8]. Here, a number of ntree

unpruned binary classification trees is learned, each on the
basis of a random subset of the training data and a random
subset of available features. In the prediction stage, deci-
sions are made by a majority vote. If ntree is large enough,
the RF is known to be relatively insensitive to overfitting.
This method offers the advantage that the quality of the
learned classifier can be evaluated without an additional
cross-validation dataset by analyzing the “out-of-bag” er-
ror (OOBE). It signifies the misclassification probability
and is calculated by evaluating each tree with that frac-
tion of the training data not used for its training, i.e. the
out-of-bag data. Moreover, the feature importance can be
evaluated by randomly permuting data for each feature and
measuring the increase in error, ∆OOBE. To train the al-
gorithm, all data available was used. As the training data
is heavily biased, countermeasures have to be taken. In-
stead of creating a balanced training set by excluding data,
the assumed prior distribution was manually optimized to
maximize the score on the hidden test set.

3. Results and Discussion

To tune the algorithm, the OOBE was optimized. In the
final implementation, a Hann-window of 50 milliseconds

length and a hop-size of 13 samples is used. At 1 kHz sam-
pling rate, this results in 26 frequency bins per state. As an
additional feature, the residual of the NMF is used. Thus, a
total of 4× 26 + 1 = 105 features is used. In Figure 2, the
OOBE over the number of trees ntree is shown when the
complete training set (subsets a−f ) are used. One can see
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Figure 2. Out-of-bag error over number of trees when
using the full training set (subsets a− f ).

that the OOBE actually increases for ntree < 200 indicat-
ing an inappropriate forest size. For ntree > 300, however,
a decrease in OOBE can be observed. To balance run time
and accuracy, ntree = 3000 was manually selected in the
submitted entry.

To compensate for biased training data, the RF as imple-
mented in MATLAB allows to set an expected distribution
of classes. However, assuming a balanced distribution led
to a low sensitivity (Se) at a high specificity (Sp) on both
the unbalanced training set as well as the balanced hidden
test set. Thus, the priors for normal p(n), unsure p(u), and
abnormal p(a) were manually modified as shown in Ta-
ble 1. If the priors are set to p(n) = 14%, p(u) = 3%

selected priors cross-val. training / hidden test set
p(n) p(u) p(a) Se Sp Overall
38% 4% 58% 0.84 / 0.64 0.92 / 0.91 0.88 / 0.77
32% 4% 64% 0.86 / 0.66 0.91 / 0.90 0.88 / 0.78
14% 3% 83% 0.92 / 0.80 0.83 / 0.83 0.88 / 0.81

Table 1. Manually selected priors and results from cross-
validation on the training data as well as a random subset
of the hidden test data.

and p(a) = 83%, the maximum score on a balanced, ran-
dom subset of the hidden dataset is achieved. These pri-
ors also resulted in the maximum score on the complete

 

 

  



test set, 0.78, with a sensitivity of 0.74 and a specificity of
0.83. Note that the mean score when using 10-fold cross-
validation of the training data is not influenced but that
a trade-off between sensitivity and specificity can be ob-
served. Thus, the priors that maximize the score on the
hidden test are used in the following.

Table 2 shows the results from 10-fold cross-validation
on the complete training set when no balancing is per-
formed. Using this form of evaluation, a mean sensitivity
of 0.92 and a mean specificity of 0.83 is achieved. This
results in a mean overall score of 0.88.

In Table 3, the results for leave-one-out cross-validation
of the training data is presented. Here, each subset of the
training data is excluded from training and then predicted
using the learned classifier. One can see that results are
much lower compared to the 10-fold cross-validation. It
is also interesting to note that excluding training-b resulted
in a low OOBE. At the same time, the overall score when
predicting training-b with a classifier trained with the rest
of the data results in a very low overall score. This indi-
cates that training-b is significantly different from the other
training sets.

In Figure 3, ∆OOBE for each frequency bin of each
state is shown. For the residual, ∆OOBE is−0.6. One can
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Figure 3. ∆OOBE for each frequency bin of each state.

see that for every feature, ∆OOBE is negative and small
(−1 to 0), indicating a weak learner. Moreover, it can be
seen that frequency bins below approximately 250 Hz and,
to a smaller degree, the residual as well as frequency bins
above 450 Hz are relatively important for classification.

4. Conclusion and Outlook

First, Tables 1 and 2 demonstrate that the presented ap-
proach is indeed feasible to classify heart sound recordings
based on their spectral information. In the final config-
uration, a sensitivity of 0.74 at a specificity of 0.83 was
achieved on the complete hidden test data, resulting in an
overall score of 0.78. For this, expected distributions of
p(n) = 14%, p(u) = 3% and p(a) = 83% that almost mir-
ror the actual distribution in the training data had to be cho-
sen. It is interesting to note that these skewed priors had
no negative effect on overall score when cross-validating
the training data but had an overall positive effect on the
balanced hidden test set.

In addition, one can see that the overall score on the
hidden test set (0.78) is low compared to the mean score
of 0.88 when performing 10-fold cross-validation of the
training data. Table 3 delivers a potential explanation as
it shows a very low mean score of 0.46 when performing
leave-one-subset-out cross-validation. This indicates that
the presented approach does not generalize well to data
that was recorded using a different scenario. In phase I
of the challenge, a modified version of this algorithm
achieved a top score of 0.87 (Se = 0.90, Sp = 0.84),
which is close to the cross-validation result. Thus, we sus-
pect that the data added in phase II is (from the point of
view of the algorithm) significantly different from training
sets a to f . It is also worth noting that the specificity is al-
most identical in the cross-validation and in the hidden test
set results. Thus, the lower score originates from a lower
sensitivity. This might indicate that the algorithm misses
certain pathologies.

Several measures to improve the algorithm can be taken.
First, the segmentation process can be improved. It was
observed in the development of this algorithm that even
a randomly initialized NMF resulted in temporal excita-
tion vectors W that were correlated with different phases
of the cardiac cycle. We thus plan to further examine the
potential of the NMF for PCG segmentation. In particu-
lar, instead of initializing W , the matrix representing the
spectral shapes, H , could be initialized. This way, the oc-
currence of typical pathological or benign patterns could
be detected from analyzing W .

As an alternative, the segmentation algorithm as pre-
sented in [6] could be augmented by robust beat-to-beat
heart rate estimation [9]. Although originally developed
for cardiac vibration signals, the algorithm has since been
proven useful on a variety of cardiac signals [10,11]. Since

 

 

  



Fold test data from subset training- test data distribution test data results
iterate OOBE a b c d e f normal unsure abnormal Se Sp Overall

1 0.11 46 47 1 6 203 12 233 26 56 0.94 0.83 0.88
2 0.11 35 44 5 6 216 10 234 35 47 0.87 0.82 0.84
3 0.12 34 63 0 5 206 7 231 30 54 0.98 0.84 0.91
4 0.11 34 56 2 8 205 11 237 23 56 0.94 0.83 0.89
5 0.11 44 47 5 8 196 16 240 19 57 0.86 0.81 0.83
6 0.12 46 49 6 2 201 11 221 29 65 0.93 0.84 0.89
7 0.12 39 38 2 6 225 5 233 27 55 0.94 0.91 0.92
8 0.12 43 52 3 5 201 11 221 35 59 0.94 0.83 0.89
9 0.13 43 44 3 6 200 19 226 23 66 0.97 0.82 0.90

10 0.12 45 50 4 3 201 12 226 32 57 0.85 0.80 0.82
Mean 0.12 40.9 49.0 3.1 5.5 205.4 11.4 230.2 27.9 57.2 0.92 0.83 0.88

SD 0.01 5.0 6.9 1.9 1.9 8.7 4.0 6.5 5.3 5.4 0.05 0.03 0.03

Table 2. Results for 10-fold cross-validation on the complete, unbalanced training data.

Excluded test data results
database OOBE Se Sp Overall

training-a 0.18 0.50 0.59 0.54
training-b 0.07 0.22 0.43 0.32
training-c 0.11 0.54 0.29 0.41
training-d 0.11 0.57 0.37 0.47
training-e 0.16 0.91 0.09 0.50
training-f 0.11 0.94 0.04 0.49
Mean 0.12 0.61 0.30 0.46
SD 0.04 0.27 0.21 0.08

Table 3. Leave-one-out cross-validation of the training
data.

the duration of the four states of the PCG are depending on
the beat-to-beat interval, an improved estimation could ul-
timately enhance segmentation results.

It should be noted that the classification is developed
purely data-driven. Thus, the inclusion of physiological
information, such as expected frequency bands in the re-
spective states of the cardiac cycle associated with cer-
tain pathological situations, could help to reduce features
and improve the generalization capability of the algorithm.
Purely data-driven methods for feature reduction such as
principal component analysis did not improve classifica-
tion results.
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