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Abstract

Type 2 ryanodine receptors (RyR2) are large (mass=2.2
MegaDalton) proteins expressed in heart cells that medi-
ate the release of calcium ions (Ca’*) that, in turn, modu-
late contraction of the heart. In this work, we analyze the
sub-cellular spatial distribution of RyR2 using data from
superresolution microscopy, an imaging technique that al-
lows highly accurate positioning (<10 nm in x and y; <40
nm in z) of the RyR2 within the heart muscle cell. In par-
ticular, we present the first work to examine network mea-
sures of extracted RyR2 locations to examine the cluster-
ing behaviour of these channels. We collected images from
two groups of healthy cardiac cells; the control consisted
of 8 cells, while the second group of 8 cells were treated
with a chemical cocktail to phosphorylate the RyR2 and
to inhibit dephosphorylation. We examined the classifi-
cation accuracy (using random forest classifier) and the
group differences (using Mann-Whitney statistical test and
Bonferroni multiple comparison correction) based on sev-
eral network measures, at multiple proximity thresholds.
Several network measures we examined revealed features
(e.g. network clustering) that enabled us to differenti-
ate between these two populations (p<0.00045) with high
classification accuracy (>95% at proximity thresholds 200
and 250 nm). Our findings may help in better understand-
ing Ca’* signaling during contraction and give insight into
the changes that underlie its regulation.

1. Introduction

The process of calcium release is essential for subcel-
lular dynamic functions such as excitation-contraction (E-
C) coupling in cardiac myocytes. The ryanodine receptors
(RyRs) are a class of large protein channels responsible for
mediating the rapid release of calcium ions (Ca”*) from in-
tracellular stores into the cytosol [1]. There are multiple
isoforms of RyR proteins: RyR1 is primarily expressed in
skeletal tissues. RyR2 is primarily expressed in cardiac
myocytes and RyR3 is widely expressed in the brain. In
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this paper, we focus on cardiac cells and on RyR2 proteins
in the dyad. The dyad is the structural element formed by
the close apposition of the membranes of the sarcolemma
(either surface or t-tubule) and the junctional sarcoplas-
mic reticulum (jSR) [2]. RyR2 proteins are distributed on
the jSR membrane opposite the L-type channels in the sar-
colemma.

The principal determinant of the force of cardiac con-
traction is the amount of Ca®* released from the sarcoplas-
mic reticulum, and this is controlled in part by how RyR2
are distributed relative to each other. Electron tomography
has demonstrated that the RyR2 distribution can be altered
by physiological factors, such as phosphorylation (the fight
or flight response) [3].

The recent development of superresolution microscopy
(also called nanoscopy), such as direct stochastic optical
reconstruction microscopy dSTORM, can bring new in-
sight into cardiac cell biology. At a high level, SSTORM
nanoscopy offers single molecule localization and allows
for nanometer-precision identification of RyR2 locations,
which in turn enables us to study their arrangements [4].
This will lead to a better understanding of Ca”* signaling
during cardiac E-C coupling.

Superresolution microscopy has been performed on car-
diac myocytes [4] and [5] but neither in 3D nor using net-
work measures. In this work, we quantitatively study the
3D spatial arrangements of a large number of RyR?2 blinks
from dSTORM data while making no a priori assumptions
about the underlying distribution. We do so by represent-
ing the RyR2 as a complex protein network, analysing its
topological features, and determining whether those fea-
tures are altered by factors such as phosphorylation. Com-
plex networks have been analysed at the macro-scale using
diffusion MRI for brain images [6, 7], but similar analyses
at the sub-cellular level for cardiac proteins are yet to be
performed. Other quantitative analysis of superresolution
microscopy data were performed by Owen et al. [8] and
[9]. However, they studied constellations of T-cells (not
cardiac-related proteins) using second order statistics (Rip-
ley’s function) and not complex network features or were
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Table 1. Survey of most related work. Dim: dimensionality; Analysis: quantitative/ qualitative; ML: machine learning; Net: network measures; and

Res: resolution/scale.

[ Reference | Dim | Modality [ ML [ Net | Field [ Analysis [ Res |

[10] 2D elec./confocal microscopy | No | No cardiac (RyR2) Qualit./Visual | pm
[8] 2D superresolution No No T-Cells Quantitative nm
[9] 3D superresolution No No T-Cells Quantitative nm
[1] 3D electron cryomicroscopy No | No cardiac (RyR1) Qualitative A
[4] 3D superresolution No | No | cardiac (RyR2,JPH2) Survey nm

[6,7] 3D functional/structural MRI No Yes brain Quantitative mm

ours 3D superresolution Yes | Yes cardiac (RyR2) Quantitative nm

limited to 2D.

To the best of our knowledge, our work is the first to
study 3D configurations and interactions of RyR2 proteins
in cardiac cells via quantitative analysis of complex net-
works (Table 1). In particular, we have analysed two pop-
ulations of RyR2, control and phosphorylated, as complex
networks and extracted network measures as features for
machine learning (classification) techniques.

2. Method

Overview: Our hypothesis is that there are differences
in the arrangement of RyR2 between the two populations
(control vs. phosphorylated). To examine this hypothe-
sis, at a high level (Figure 1), we acquired dSTORM im-
ages from both populations, extracted 3D locations (point
clouds) of RyR2, encoded the point cloud as a complex bi-
ological network, and extracted network measures. We ex-
amined the discrimination ability of these features by train-
ing a machine learning classifier and performing statistical
analysis of group differences.

Data Collection: We collected images from two groups
of healthy cardiac cells. The control group consisted of 8
cells while the second group of 8 cells were treated with a
chemical cocktail to phosphorylate the RyR?2 and to inhibit
dephosphorylation [3]. Phosphorylation increases cardiac
contractility by, in part, increasing the likelihood that the
RyR2 channel will open, but how this is accomplished is
poorly understood. We used dSTORM to image RyR2 pro-
teins [11], from which we constructed a 3D point-cloud.
To limit the computational times we first segmented the
images to isolate Z-lines (9 from the control cells and 14
from those that were phosphorylated; between 30,000 and
65,000 blinks each), which is where jSR and RyR?2 are pri-
marily located.

Network Construction: Given the locations of all
the RyR2 proteins, we constructed a weighted undirected
graph G = (V, E), with a set of vertices V' that represent
the RyR2 proteins, and a set of edges E that represented
the interaction between the RyR2s, where each edge is a
pair of vertices {u,v}. An edge is connected between a
pair of proteins (4,5) € V only if the Euclidean distance
between the nodes is less than a graph connectivity prox-
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Figure 1. Proposed RyR2 biological network analysis and classifica-
tion pipeline.

imity threshold 7.

Network Feature Extraction: To compare the connec-
tivity patterns of the RyR2 in both populations (control
and phosphorylated), we extracted 16 network measures,
summarized in (Table 2), at different thresholds: T' €{
50, 75, 100, 150, 200, 250, 300} nm, i.e. we represent
each network by a 7 x 16=112-dimensional feature vec-
tor. These measures capture different aspects of clustering
and community structures [12]. Since there are multiple
antibody binding sites on an individual RyR2, which is
~ 30 x 30 x 12 nm, we set a lower limit of 50 nm to avoid
identifying individual RyR2 as multiple nodes. In order to
handle the network analysis we used the Pajek-XLL Soft-
ware Package!'.

Classification and Statistical Analysis: We used the
extracted features for classification, using a random forest
(RF) classifier, with 10-fold cross-validation. We also per-
formed the Mann-Whitney non-parametric statistical test
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Table 2. Complex network measures used in this work.
[ Network measure | Description

numNodes | Number of nodes in the network
numEdges | Number of edges in the network
avgDegree | Average network degree
netTransitivity | Network Transitivity
netModularity | Network Modularity
WSClustCoef | Watts-Strogatz clustering coefficient
densityLoops | Network density (loops allowed)
densityNoLoops | Network density (no loops allowed)
degCentralization | All-node average degree centralization
degCentLowest | Lowest degree centralization
degCentHighest | Highest degree centralization
degCentAverage | Average degree centralization
degCentStdDev | Standard deviation of degree
centralization values
numConnComp | Number of weak connected components
(i.e. number of clusters)
sizeLargestConnComp | Size of the largest connected component
percentLargeConnComp | Percentage of number of nodes in the
largest connected component to total
number of nodes in network
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Figure 2. RyR2 network classification accuracy (ACC%), area under
the ROC curve (AUC%), specificity (SPE%) and sensitivity (SEN%).

to examine group differences.

3. Results and Discussion

In our first experiment, we trained the RF classifier (with
100 trees) to distinguish between control vs. phosphory-
lated cells, using features extracted at different network
thresholds 7T'. Figure 2 depicts the classification accu-
racy (ACC), area under the ROC curve (AUC), specificity
(SPE), and sensitivity (SEN) values.

It is clear from Figure 2 that we achieve excellent clas-
sification performance near 200 nm (accuracy 100% at
T =200 nm and 95.7% at T' =250 nm). At higher thresh-
olds T'>300 nm, we see a relatively lower classification
performance (~82.6%), which is expected because exces-
sive merging of RyR2 clusters occur as we increase the
proximity threshold, thus diminishing any group-specific
clustering characteristics. At thresholds 7' < 200 nm, the
classification results also deteriorate but remain relatively
acceptable (accuracy ~91-95.7%), which may corroborate
other findings linking heart pathologies (e.g. heart failure
under extreme stress) with reduction in the size of the dyad
at comparable scales [2].

In our second experiment, we sought to discover which

significant at p<0.05 x: without and O: with Bonferroni correction ;walueoe "

300 F X x x
= 0.05
£ x x x X
E250 ®
200 [ X X X X 0.04
3 ® ®
5 150 % x @ x x ® 0.03
[=]
S 100 % x x @ x x ® 0.02
(o]
£ x X X
ETs ®xdOO 001
s x O x © ® ®x x
7 I
0
0 [ b b % 0 13 c k7 s [} > o Q Q
] e £ £ 8 3 38 5 & 8 9 & £ € E
3 5 2 &8 ¢ 8 8 § z 5 ¢© & & 3§
b4 ® % 3 B 4 2 N O @ S B O O O
E S § 8 2 2 2 v 2 £ 2 ¢ E £ E
5 e &8 2 5 v £ & § T T 5 5§ & &
= = - 2 2 5 £ 5 8 8 3 § o o Q
2 2 25 2 6 92 v Q B» E g &
s » § o & 2 & £
a T
[} I3
N oo
@ o
Q

network measure

Figure 3. Discriminability of network measures at multiple thresholds.
Colors correspond to p values. Brighter yellow indicates stronger dif-
ferences between groups. Measures that showed statistically significant
differences at p < 0.05 are indicated by x and by (O with Bonferroni
correction (i.e. p < 0.05/(16 x 7) = ~0.00045 for 16 features and 7
thresholds).

features were discriminatory at various thresholds 7.
Since the feature sets of the two groups (control vs.
phosphorylated) are not normally distributed, as per the
Kolmogorov-Smirnov normality test (p < 0.0001), we
used the non-parametric Mann-Whitney statistical test to
evaluate the null hypothesis that the network features of
the two cell types followed the same distribution. Fig-
ure 3 shows which features and at which thresholds there
were statistically significant differences between the two
classes, evaluated at significance level p < 0.05. Since we
performed multiple pairwise tests (7 thresholds x 16 net-
work measures) on a single dataset, we show the results
with and without the application of Bonferroni multiple
comparison correction; the latter used to reduce the chance
of obtaining false-positive results (type I errors).

From Figure 3 we see that the most discrimina-
tory features (p<0.00045) at low thresholds (50, 75
nm) are related to network density (densityLoops,
densityNoLoops) and number of connected compo-
nents (numConnComp). The size of the largest connected
component (sizelLargestConnComp), on the other
hand, becomes discriminatory at thresholds (7" > 100
nm). The clustering coefficient (WSClustCoef) proved
discriminatory at a wide range of thresholds (50 < T <
250 nm). For example, taking a closer look at the val-
ues of numConnComp and sizeLargestConnComp
at varying thresholds (Figure 4), we note that as we
increase the threshold, RyR2 clusters merge and the
number of clusters (numConnComp) decrease (Figure
4-a), making it harder to discriminate between control
vs. phosphorylated at higher thresholds. On the other
hand, the feature capturing the size of the largest cluster
(sizeLargestConnComp) becomes more discrimina-
tory at larger thresholds (Figure 4-b).

Given the importance of RyR2 clustering-related net-
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Figure 4. A closer look at the behaviour of RyR2 clustering. As

the number of connected components (numConnComp) become less dis-
criminatory at high thresholds (a), the size of the largest connected com-
ponent (percentLargeConnComp) becomes discriminatory (b).

control

Figure 5. Visualization of RyR2 clusters at T=100 nm in Z-lines of a
control cardiac cell (top) vs. phosphorylated cardiac cells (bottom).

work measures in describing group differences, we vi-
sually observed how the behaviour of RyR2 clustering
changes between control and phosphorylated states, Figure
5. Note how in the phosphorylated state (Figure 5-bottom)
the RyR2 clusters are beginning to merge, forming a more
compact chain-like structure along the Z-line, whereas the
RyR2 clusters in control group are more disperse (Figure
5-top).

Electron tomography has identified the position of indi-
vidual RyR2 proteins and changes in their distribution in
response to phosphorylation (Asghari et al. [3]). While
each tomogram is limited to a single dyad or to a por-
tion of it (400 nm or less), our network analyses can as-
sess clustering at large spatial scales, thousands of nm or
more. This has allowed us to determine that phosphoryla-
tion promotes the formation of large RyR2 clusters from
smaller ones. This has both complemented and extended
the observations of Asghari et al. [3].

4. Conclusions

We have provided the first quantitative analysis of
RyR2 proteins in cardiac cells using network analysis
and demonstrate that this may be a useful technique for
analysing superresolution immunofluorescence data with-
out making any assumptions about the underlying molec-
ular distribution. By performing statistical analyses and
machine learning based classification of complex network
features, we observed clustering differences between two
groups of cardiac cells, control vs. phosphorylated. Future
work, will involve studying the morphology of the individ-
ual RyR2 clusters on a larger number of datasets.
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