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Abstract

It is well-known that sleep apnea affects the respira-
tion and the heart rate (HR), and studies have shown that
the cardiorespiratory coupling is also compromised dur-
ing obstructive sleep apnea (OSA). Furthermore, the clas-
sification of hypopneas is challenging, in particular when
only ECG-derived features are used. In this context, this
study investigates how different ECG-derived respiratory
(EDR) signals resemble the respiratory effort during dif-
ferent types of apneas, and how the amount of informa-
tion transferred from respiration to HR varies according
to the respiratory signal used, real or ECG-derived. ECG
and respiratory signals of 10 patients suffering from sleep
apnea were analysed, and three different EDR algorithms
were used to estimate the respiratory effort. The informa-
tion transfer was quantified using information dynamics
on HR and both the real and estimated respiratory sig-
nals. Results suggest that the information transfer is re-
duced during all types of apneas/hypopneas, and they in-
dicate that the EDR might not capture all variations in
cardiorespiratory dynamics during hypopneas. As a re-
sult, the information transfer computed using the real res-
piratory signal achieve accuracies of up to 85% in the de-
tection of sleep apnea with 76% of hypopneas correctly
detected, compared to 79% achieved using the EDR with
only 63% of correctly identified hypopneas.

1. Introduction

Sleep apnea is a sleep-related breathing disorder that is
considered a risk factor for morbidity and mortality due
to its long-term effect on the cardiovascular system [1].
Apneas and hypopneas are two types of respiratory events
characterized, respectively, by a total absence or a reduc-
tion of airflow during at least 10 seconds [2]. Typically,
sleep apnea is diagnosed using poly(somno)graphy (PSG),
which is a sleep test associated with high costs and low

comfort. Therefore, multiple studies have focused on the
development of less intrusive and low cost systems for the
detection of sleep apnea [1, 3], which often include the
ECG and an estimation of the respiratory effort, or so-
called the ECG-derived respiration (EDR) [4–6].

Apneas are subdivided into obstructive (OSA), central
(CEN), and mixed (MIX), and they all have an impact on
the HR and the respiratory effort. During OSA the subject
stops breathing despite the presence of respiratory effort,
while during CEN the breathing stops but this time due
to absence of respiratory effort. OSA and MIX combined
are called MIX apneas. Hypopneas on the other hand,
are characterized by a reduced airflow caused either by a
partial obstruction (obstructive hypopnea: OSH), or by a
lower respiratory effort (non-obstructive hypopnea: HPA),
which results in a reduced oxygen saturation. Hypopneas
are often not accompanied by any clear change in the res-
piratory effort nor in the HR. Consequently, they are the
most challenging type of respiratory events to be detected
using portable systems based on ECG and respiration [3].

It is well-known that obstructive apneas not only affect
the HR and respiration, but also the cardiorespiratory cou-
pling [1,3] but little is known about how these interactions
are affected during hypopneas, and if these can be used to
improve the performance of detection algorithms. Hence,
this work investigates the information transfer derived us-
ing information dynamics [7], between respiration and HR
during different apneas and hypopneas. In addition, the
impact of the respiratory signal used, real or estimated, on
the information transfer is analysed. Finally, a classifier
is used to assess the discrimination power of information
transfer in the detection of sleep apnea.

2. Methodology

2.1. Data

The dataset used in this study consists of single-lead
ECG and respiratory signals extracted from PSG record-
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ings of 10 patients of the University Hospitals Leuven. The
mean age of the patients was 48.4 ± 11.2 years and their
mean apnea-hypopnea index (AHI) was 33 ± 20.9. Two
respiratory signals were acquired using respiratory belts
around the chest and the abdomen, and in the remainder
of this paper they will be denoted by RCH and RAB, respec-
tively. Both the ECG and the respiratory signals were sam-
pled at 200 Hz, and all the PSG recordings were annotated
according to the Chicago Criteria [2]. These annotations
indicate the beginning of the respiratory event, the dura-
tion, and the type: obstructive apnea (OSA); central apnea
(CEN); obstructive hypopnea (OSH); non-obstructive hy-
popnea (HPA); or mixed apnea (MIX). In order to analyze
the information transfer between respiration and heart rate
during apnea events, the annotations were used to segment
the signals into artefact-free epochs containing 30 seconds
before the beginning of the events, the events, and 30 sec-
onds after the end of the events. In total, 2200 respira-
tory events were segmented, namely, 652 OSA, 1282 OSH,
134 HPA, 97 CEN, and 35 MIX, with mean duration of
88.3±14.36 seconds. Furthermore, segments of 1 minute
containing normal (NOR) activity were selected and only
1417, which were free of artefacts were included in the
study. All artefact-free segments were selected using the
algorithm presented in [3].

2.2. Data Processing

In total, 3617 segments of ECG and respiratory signals
were selected. From each ECG, the tachogram (RR) was
computed using the R-peak algorithm presented in [3], and
three different EDR signals were derived. The first EDR
was computed using the changes of the R-peak amplitude
in a baseline corrected ECG signal, as first described in
[4]. This EDR will be denoted by Ramp. The second and
third EDR signals were computed using principal compo-
nent analysis (PCA) [5] and its kernel version (kPCA) [6],
and they will be denoted by Rpca and Rkpca, respectively.
All tachograms and EDR signals were resampled at 5 Hz
using cubic spline interpolation, and the real respiratory
signals RCH and RAB were downsampled at the same fre-
quency. After that, both types of respiratory signals, real
and estimated, were high-pass filtered at 0.05 Hz.

In order to evaluate how much the EDR signals resem-
ble the real respiratory effort measured on the chest and
abdomen, the correlation coefficient and the mean mag-
nitude squared coherence (MSC) were computed between
each pair of signals, as done in [6].

2.3. Information Dynamics

Information dynamics is a framework derived from the
field of dynamical information theory, which allows to es-
timate the amount of information stored in a system (i.e.

heart rate) and the information transferred from one sys-
tem to the other (i.e. respiration to heart rate). In this work,
these information measures were estimated using the time
series method proposed in [7].

Assume a stationary stochastic process U = [X,Y],
where X = {Xn}Nn=1 is the respiratory signal, and Y =
{Yn}Nn=1 the tachogram, both of length N . These two sys-
tems are interconnected through the well-known respira-
tory sinus arrhythmia (RSA), which defines a causal rela-
tionship from X to Y. Therefore, the uncertainty about
Yn can be resolved by knowing its own past denoted as
Y−n = [Yn−1, Yn−2,...] and the information transferred
from the past of X denoted as X−n = [Xn−1, Xn−2, . . . ].
In fact, this uncertainty about Yn can be resolved by means
of the predictive information (PY), defined as

PY = H(Yn)−H(Yn|X−n ,Y−n ), (1)

where the first term is the Shannon entropy, which quanti-
fies the uncertainty contained in Yn, and the second term
is the conditional entropy, which quantifies the residual
amount of information carried by Yn that cannot be pre-
dicted by the past of the process U. In order to quantify
the contribution to Yn of only X, the definition in (1) can
be rewritten as

PY = H(Yn)−H(Yn|Y−
n )+H(Yn|Y−

n )−H(Yn|X−
n ,Y−

n ), (2)

where H(Yn)−H(Yn|Y−n ) is the self-entropy denoted by
SY, and H(Yn|Y−n )−H(Yn|X−n ,Y−n ) is the transfer en-
tropy denoted by TX→Y . Here, SY is the amount of in-
formation stored in Y, where larger values indicate a high
predictability of the heart rate. On the other hand, TX→Y

quantifies the amount of information transferred from the
respiration to the heart rate, which cannot be predicted
from the past of the heart rate. Hence, differences in car-
diorespiratory interactions can be found by analysing this
term. The larger the transfer entropy, the more the infor-
mation transferred from respiration to heart rate.

The different entropy terms can be computed using the
approach presented in [7], which links information theory
and predictability. This approach assumes that the process
U has a joint Gaussian distribution that allows to describe
its dynamics using a linear vector autoregressive (VAR)
model of order p, optimized using the Akaike information
criterion (AIC). In this way, the different entropy terms are
linked to the error probabilities of a regression model.

2.4. Comparative analysis

The differences between the entropy estimates of differ-
ent apnea types (OSA, OSH, HPA, CEN, and MIX) and
normal segments were evaluated using the Kruskal-Wallis
test with 95% of confidence. Since 6 different groups (i.e.
5 apnea types and 1 normal group) were compared all ver-
sus all, a multi-comparison test was used with Bonferroni

 

 

  



correction equal to α/15 = 0.003, with α = 0.05, and
15 hypothesis. These differences were analysed for each
respiratory signal: 2 real and 3 estimated. Furthermore,
differences in the values of coherence and correlation be-
tween the EDRs and the real respiratory signals were eval-
uated for each type of apnea using the same statistical tests.

In addition to the statistical tests, a classifier was used to
assess the discriminative power of the transfer entropy in
the detection of sleep apnea. A least-squares support vec-
tor machine (LS-SVM) classifier was used as in [3], with
the following input parameters: standard deviation of RR
(std(RR)) and TX→Y . The latter was calculated using the
real and estimated respiratory signals. In total, 5 different
classifiers were implemented and a comparison was per-
formed using their sensitivity, specificity, and accuracy.

3. Results and discussion

The comparison between the entropy estimates indi-
cates that the information transferred from respiration to
heart rate is significantly lower (p<0.003) during all ap-
nea episodes than during normal activity. This result can
be seen in Figure 1, where the transfer entropy values
computed using both the abdominal (RAB) and thoracic
(RCH) respiratory effort are significantly lower for all ap-
neas. This can be explained by the increased sympa-
thetic modulation during episodes of apnea, which cause
changes in heart rate that are not modulated by the respi-
ration. In other words, the synchronization between respi-
ration and heart rate (i.e. RSA) is reduced during episodes
of sleep apnea [1]. These results are in agreement with
those presented in [3], where the cardiorespiratory inter-
actions were quantified using orthogonal subspace projec-
tions, and where the power of the modulations of heart rate
due to respiration was found to be significantly reduced
during apneas. An important difference between this work
and the one described in [3] is that here the hypopneas are
also characterized by a reduced information transfer, while
in [3] they appeared similar to normal activity. Note, how-
ever, that this is the case only when the real respiratory sig-
nal is used. As shown in Figure 1, the difference between
hypopneas and normal activity is not captured by any of
the EDR approaches: Ramp, Rpca and Rkpca. This can be
related to the reduced correlation and coherence between
the EDRs and the respiratory effort during apnea episodes,
which was found to be significant (p<0.003) for all the
EDRs. These results are depicted in Figure 2. Note that
this reduction is more pronounced in OSA, OSH, CEN,
and MIX apneas, where the respiratory effort is known
to differ significantly from normal activity [2]. Further-
more, even though the multi-comparison test indicates a
significant difference, it is noticeable that the relationship
between the real respiratory effort and the EDR during hy-
popneas (HPA) does not seem to differ from the one during

normal activity. This is not a surprise, since the detection
of hypopneas requires the use of other physiological infor-
mation apart from respiratory effort, such as blood oxygen
saturation and airflow. With this in mind, it is possible that
the small variations that might be present in the respiratory
effort during hypopneas are not captured by the EDR sig-
nal. In addition, the large information transfer during NOR
and HPA can be associated, on the one hand, with the fact
that both the EDR and the tachogram are surrogate signals
of the ECG, and on the other hand with the minimal ef-
fect that hypopneas have on the morphology of the ECG
[3]. Further investigations are needed to determine if this
is the case. Moreover, since the model used in this study
assumes stationarity and a join Gaussian distribution be-
tween the variables, it is important to validate these results
against model free approaches.

From the results of transfer entropy obtained using the
real respiratory effort, it is possible to think that an im-
proved detection of hypopneas can be achieved. In order to
test this, 5 classifiers were built and their sensitivity (Sens),
specificity (Spec), accuracy (Acc.), and area under the re-
ceiver operating curve (AUC) were compared and they are
indicated in Table 1. The table also contains the percentage
of HPA that were classified correctly in each case. Note
that the classification performance obtained with the real
respiratory signals is better than the one obtained using
any of the EDRs. At this point only two features were used
for the classification, namely, the standard deviation of the
tachogram and TX→Y . Future studies will focus on the
use of extra parameters that can help improving the overall
classification performance on bigger datasets.

4. Conclusion

The findings presented in this study suggest that the
cardiorespiratory interactions are affected during all ap-
neas. In fact, the information transferred from respiration
to heart rate is reduced during episodes of apnea, which
confirms the lower synchronization suggested by previous
studies in the literature. These findings, however, were
only observed during hypopneas when the real respiratory
effort was used to quantify the information transfer. One
possible explanation for this is the fact that the EDR does
not fully capture the respiratory variations during apneas.
As a result, the use of the EDR might reduce the perfor-
mance of sleep apnea detectors, in particular, in the de-
tection of hypopneas. Note that this work was done using
predefined segments containing the apnea episodes, hence,
future studies need to be performed on continuous signals
in order to confirm the discrimination power of the transfer
entropy in combination with the EDR. Furthermore, meth-
ods that do not assume stationarity and joint Gaussian dis-
tributions will need to be used to estimate the information
transfer in order to validate these results.
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Figure 1. Transfer entropy for normal segments and the different apneas and hypopneas. Note that the distinction between
hypopneas and normal activity disappears when the EDR signals are used.

Table 1. Performance of the classifiers using TX→Y and
std(RR). %HPA corresponds to the percentage of hypop-
neas that are correctly classified.

Resp. Signal Sens. Spec. Acc. AUC %HPA

RAB 0.81 0.86 0.83 0.89 0.75
RCH 0.88 0.81 0.85 0.89 0.76
Ramp 0.77 0.83 0.79 0.85 0.63
Rpca 0.75 0.83 0.79 0.85 0.60

Rkpca 0.75 0.85 0.81 0.84 0.54
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Figure 2. Mean magnitude squared coherence (MSC) and
correlation coefficient between RAB and Ramp. The results
are similar for all EDRs and for RCH.
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