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Abstract

During the antenatal period non-stress test, fetal heart
rate (FHR) is routinely measured non-invasively by car-
diotocography. The purpose of this study was to measure
the performance of FHR acceleration detection for fetuses
having a gestational age (GA) 28-40 wks, comparing our
existing detector for term fetuses to one based on a hid-
den semi-Markov model (HSMM) and another based on
an LSTM (Long short-term memory) recurrent neural net-
work.

1. Introduction

Labour and delivery is monitored electronically with
sensors that measure and record maternal uterine pressure
(UP) and fetal heart rate (FHR), a procedure referred to as
cardiotocography (CTG). The objective of this monitoring
is to detect the fetus at substantial risk of hypoxic injury so
that intervention can prevent its occurrence. However, in
the antenatal period long before delivery, fetal heart rate
(FHR) is also routinely measured during the non-stress
test. Clinicians view the presence of FHR acceleration
events during this test as a positive indicator of fetal health.
Fetal heart rate (FHR) accelerations (ACC) are elevations
in the heart rate over the baseline, having a minimum am-
plitude of 15 beats per minute, lasting 15 s to several min-
utes.

While we have developed a detector of FHR events for
term labour, we have not applied it in the smaller ampli-
tude, lower signal-to-noise (SNR) antenatal context. The
purpose of this study was to measure the performance of
FHR acceleration detection for fetuses having a gestational
age (GA) 28-40 wks, comparing our reference detector to
one based on a hidden semi-Markov model (HSMM) and
another based on an LSTM (Long short-term memory) re-
current neural network.

2. Data

From a dataset of 72 antenatal CTG recordings for ges-
tational age (GA) 28-40 wks, with durations ranging from

20 min to several hours, an expert obstetrician (one of the
co-authors) manually annotated the ACCs. Each antenatal
GA group included at least 5 recordings.

3. Methods

3.1. Preprocessing

The CTG data was recorded at 4 Hz in a clinical set-
ting, so it was subject to specific types of noise. The loss
of sensor contact can temporarily interrupt the UP or FHR
signals, and interference from the (much lower) maternal
heart rate can corrupt the FHR. These both appeared in the
signal as a sharp drop to much lower amplitude followed
by a sharp signal restoration. As described in [1], we pre-
processed the data to bridge interruptions with linear inter-
polation.

For HSMM preprocessing, we detrended the signals by
a moving window median filter of 20-min past samples.
For LSTM the detrending was performed with a high-pass
filter selected to pass a long contraction or deceleration
without incurring excessive filter delay. We chose a fil-
ter with a cutoff frequency of 1

220s = 4.5 × 10−3 Hz as a
compromise between these competing demands.

The resulting signals where then decimated to 0.25 Hz
to reduce feature and training computational requirements.

3.2. Reference detector

The reference detector for this study is an FDA-
approved detector of FHR events for term labour (Peri-
CALM PatternsTM ). It employs a combination of ad-hoc
rules, signal processing and feed-forward neural-network
classification to estimate FHR baseline and variability, and
to detect acceleration and deceleration patterns.[2]

3.3. HSMM detector

We used an HSMM adapted from the Physionet Lo-
gistic Regression HSMM [3] because it accounts for the
state durations of the ACCs. We allowed two states (ACC
and non-ACC) and used a fixed Gaussian durational model
with forced transitions only after the ACC state.
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3.4. LSTM detector

Whereas the reference detector employed feed-forward
neural networks, the LSTM networks of this study are re-
current, and their feedback connections allow recent events
to be stored in the form of internal activations. Back-
propagation through time (BPTT - [4]) and Real-time re-
current learning (RTRL - [5]) have been the conventional
algorithms for learning what to put into the short-term
memory, but they require long learning times or do not
work at all [6]. In addition they fail to bridge gaps in the
more distant past (ie. greater than 10 steps) due to back-
propagated error signals that either vanish (causing long
learning times) or explode (causing oscillating weights).

LSTM overcomes error back-propagation problems by
using a gradient based algorithm (using elements from
both BPTT and RTRL) whose error flow through its in-
ternal states is forced to be constant (rather than exploding
or vanishing). The basic LSTM unit is a memory block
containing one or more memory cells and three multiplica-
tive and adaptive gating units shared by all cells in the
block. These input, forget and output gates learn to con-
trol, respectively, what input information to store in the
memory, how long to store it and when to release it to
the output. The internal memory is provided by a recur-
rently self-connected linear unit that can recirculate acti-
vation and error signals indefinitely, providing short term
memory storage for extended periods of time.

We used the CUda RecurREnt Neural Network Toolkit
(CURRENNT) [7] because it allowed us to use an graph-
ics processing unit (GPU), the NVidia Tesla C2050, to ef-
ficiently perform parallel sequence training with network
architectures significantly larger than those used in the ref-
erence detector.

3.5. Feature calculation

For the LSTM detector, we performed Karhunen-Loève
(KL) decomposition, retaining 8 components correspond-
ing to the highest eigenvalues. The eigenanalysis used
observation vectors from 40 s sliding windows. We also
added a component corresponding to the reconstruction
energy of the KL components, as well as the median signal,
the detrended high pass and its complement low-pass sig-
nal. For the HSMM detector, features were derived from
a discrete cosine transform (DCT) decomposition with a
160 s window and 3 components of a 12-level decompo-
sition (dct6, dct10, dct12) as well as a median signal and
a total energy component. Adding more components re-
sulted in poor training performance. The DCT decompo-
sition used with the HSMM detector can be considered an
fixed-basis approximation to KL decomposition [8].

3.6. Training

We used 10-fold cross validation for training. Each
sample was labelled based on its overlap with the expert
marking. Samples occurring in low-quality signal inter-
vals were labelled as noise, resulting in a three-class la-
belling (noise, non-accel and accel). For the LSTM case,
the cross-validation included train, validation and test par-
titions. The eigenanalysis was performed per-fold on the
training set and applied to the validation and test sets.
Similarly, per-fold normalization for zero-mean and unit
standard deviation was computed for the training data and
then applied to the other sets. Normalization is critical for
LSTM numerical stability. To overcome gradient-based
training susceptibility to local minima, we trained multiple
(5) neural nets per fold with randomized initial weights.

Batch training was done on the approximately 56 train-
ing sequences with 10 parallel sequences per “mini-batch”.
The LSTM network architecture included three hidden lay-
ers of 50, 100 and 34 cells, respectively. These values were
chosen by experiment to be as large as possible while re-
maining within GPU memory availability and reasonable
cross-validation duration (e.g., 12 hours). The 12 features
were applied to the input layer and the output layer used
a softmax activation function followed by a cross-entropy
objective function for the classification. To provide bet-
ter contextual information, the training included a 2 minute
“lookahead”, such that predicted output was allowed to
consider features from up to 2 minute future features. This
lookahead value was a compromise between real-time de-
lay and potential improved accuracy. For better generaliza-
tion, zero-mean gaussian noise of standard deviation 0.6
was added to each input, as suggested in [7]. Other param-
eters were set to the CURRENNT default values. Training
continued for each batch epoch until the overall objective
error function did not improve on the validation set after
20 epochs (i.e., early stopping). The neural network with
the best performance on the validation set was retained for
use with the test set.

3.7. Evaluation

Evaluation was based on performance on the test set,
whose independence was ensured by restricting all tuning
parameters (eigenanalysis, normalization, network archi-
tecture and weights, early stopping, etc.) to observation
of training and validation sets alone, as described above.
An ACC annotated by the expert was deemed detected by
one of the detectors if any predicted ACC sample over-
lapped with the expert event. We report overall and per
GA-group sensitivity (Sens) and positive predictive value
(PPV) based on this detection definition.

 

 

  



Sens(%) PPV(%) Sens+PPV(%)
Train 79.6±5.6 79.3±4.6 158.9±3.5
Validation 79.4±4.7 79.4±7.4 158.9±9.4
Test 74.8±10.2 81.4±9.3 156.2±14.0

Table 1. For each data partition over all GA groups,
mean and standard deviation over all 10 folds for sensitiv-
ity (Sens), positive predictive values (PPV) and Sens+PPV
for the LSTM acceleration detector.

4. Results

The overall LSTM results are shown in Table 1. The
training results were modestly better than the validation
and test results with Sens and PPV both at close to 80%
and a bit less for test Sens (74.8 %), suggesting that early
stopping effectively avoided overfitting during training.

The per GA-group performance is shown in Fig. 1 for
all three detectors, as well as the number of ACC events
marked by the expert for each group. The reference and
LSTM detectors had comparable performance with an av-
erage of Sens and PPV of approximately 80% over all
GA groups. Both were consistently superior compared to
HSMM in PPV while HSMM sensitivity was more stable
across the GA groups with slightly higher Sens at low GA.
PPV tended to degrade with earlier GA for all detectors.

5. Conclusions

Both the LSTM and HSMM detectors have signal pro-
cessing and machine learning advantages over the refer-
ence detector. Information capture should be more com-
plete since features are based on orthogonal signal decom-
positions rather than manually selected features having di-
rect correspondence with familiar clinical measures. Fur-
thermore, training had a greater learning capacity (e.g.,
100k LSTM cells compared to tens of feed-forward neural
network neurons) with a much smaller set of tuning param-
eters and as such the comparable results between LSTM
and the reference reflect a promising first iteration at what
is possible with more modern computational hardware and
with far less development effort than required for the ref-
erence detector (multiple human-years).

All detectors degraded in the lower SNR conditions of
earlier GA. In the next phase of this study, models that
account for GA, and based on a larger dataset, should im-
prove performance. We also intend to investigate further

which features are most discriminating and use a com-
mon set to better compare both detectors. Finally, despite
the reduced algorithm complexity of both the LSTM and
HSMMM detectors further searching of the tuning param-
eter space is required to achieve better performance.
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(b)Positive Predictive Value
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(d)Number of accels per group28 30 32 34 36 38 40
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Figure 1. (a) Sensitivity and (b) PPV for the reference (red), LSTM (black), and HSMM (blue) detectors. (c,d) Number of
accels per group.
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