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Abstract

Heart rate (HR) shows oscillations with different peri-
ods as a result of the sympatho-vagal balance. The most
studied ones are short-period variations and the circadian
pattern. However, the existence of rhythms of longer peri-
ods has not been systematically studied.

The aim of this work is to study HR long-period rhythms
in a multicentric database including 336 patients in sinus
rhythm, with implanted cardioverter defibrillator. We used
two methodological approaches: First a rhythmometric
procedure to automatically select the statistically signif-
icant rhythms present in the signal; Second, the LASSO
path approach to analyze the order of activation of the
rhythms, representing the importance of each rhythm.

Most of the population showed a significant annual
rhythm (78% day/80% night). Weekly and quarterly
rhythms were also present (weekly 26% /26% ; quarterly
22%/21%). Monthly rhythm was rarely present. Most
present rhythm combinations were annual plus weekly
(21%/21%) and annual plus quarterly (19%/18%). The
order of activation given by the LASSO path was in agree-
ment with the multicomponent rhythmometric model in the
86%/85% of the cases.

The unusual long monitoring period, and the high num-
ber of patients, represent an ideal scenario to robustly as-
sess the existence of long-term rhythms.

1. Introduction

Physiological rhythms arise from stochastic, nonlinear
biological mechanisms interacting with a fluctuating envi-
ronment. Separation of dynamics due to intrinsic rather
than extrinsic mechanisms is not possible. Several stud-
ies indicate rich dynamics with differences between nor-
mal individuals and patients. Therefore, disruption of the
rhythmic processes beyond normal bounds or emergence
of abnormal rhythms is associated with disease. A possible
approach to study these dynamics is to analyze qualitative
aspects of simplified mathematical models of physiologi-
cal systems [1].

Most biological variables vary greatly along several time
scales in health and disease [2]. Heart rate (HR) shows os-
cillations with different periods. The most studied ones
are short-period variations (seconds, minutes) and the cir-
cadian pattern. However, there is little information about
the existence of rhythms of longer periods and they have
not been systematically studied. One reason is the diffi-
culty to ensemble the appropriate dabatabases with a large
number of subjects and sufficient monitoring periods.

A suitable hypothesis is that physiological mechanisms
in healthy subjects are more adaptable to environmental
changes than those in pathological subjects, and maybe
with a progressive deterioration of this adaptability related
to the severity of the pathological condition. Several stud-
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ies have shown blunted or altered circadian rhythms of dif-
ferent physiological variables [3–5].

The aim of this study is to assess the adaptation ca-
pabilities, the patients responses, to stimuli of longer
time periods. To this end we assessed the long-term HR
rhythms present in a multicentric database including 336
patients. The database was assembled from SCOOP plat-
form, a repository conveying around 12000 intracardiac
electrograms stored by implanted cardioverter defibrilla-
tors (ICDs). The analysis was performed by means of two
methodological approaches: First a rhythmometric pro-
cedure to automatically select the statistically significant
rhythms present in the signal; Second, the LASSO path
approach to analyze the order of activation of the rhythms,
representing the importance of each rhythm.

The structure of the paper is as follows. Section 2
describes the multicentric database and the data pre-
processing. In Section 3, the two methodological ap-
proaches are presented. Section 4 depicts the results. Fi-
nally, the conclusions are outlined in Section 5.

2. Dataset

A multicentric database including 381 patients in sinus
rhythm, was assembled from SCOOP platform. SCOOP
is a Spanish platform developed by Medtronic Ibérica
S.A., it represents a pioneer scientific repository system
in the cloud involving 48 national hospitals and conveying
around 12000 intracardiac electrograms stored by ICDs
and subsequently labeled by a scientific committee of ex-
pert physicians.

Daily and nightly mean HR was extracted from each pa-
tient record for its analysis. The monitoring period varies
between 382 and 2348 days. From this dataset, patients
with more than 5% of atrial or ventricular pacing at any
point during the monitoring period were discarded. Also,
assuming that some of the subjects could have suffered
atrial fibrillation (AF) episodes during the monitoring pe-
riod, a signal preprocessing was designed trying to detect
AF episodes. Namely, HR samples differing in more than
15% of the mean of the previous 5 days were discarded. In
this case, if more than the 20% of the samples are discarded
in one patient, the patient is discarded from the analysis.
Finally 336 patients remained for the study.

3. Methods

Extensive and dense time series collected over sev-
eral decades show that nearly all biological variables dis-
play some degree of more or less periodic behaviour.
When statistical methods are involved in data analysis
time-dependence must be taken into account. Hence, in
many cases, is useful to look upon a measurement se-
ries as consisting on a deterministic part, which may have

both rhythmic and arrhythmic systematic components, and
a noise part [2]. We used a rhythmometric procedure
based on a multicomponent COSINOR approach and a
non-parametric statistic test to automatically select the sta-
tistically significant rhythms present in the HR signal. Fur-
thermore, we used the LASSO path approach to analyze
the order of activation of the rhythms, representing the im-
portance of each rhythm.

3.1. Rhythmometric Analysis

A data sequence can be represented by a temporal re-
gression model known as the cosinor model [2], defined
by

yn = M+A0 cos(2πf0tn+φ0)+en, n = 1, . . . , N, (1)

where M denotes the rhythm-adjusted mean or MESOR
(midline estimating statistic of rhythm), A0 the amplitude,
f0 the fundamental frequency, φ0 the acrophase (i.e., the
lag from a defined reference time point to the crest time in
the cosine curve fitted to the data), andN the signal length.
The random variable en corresponds to the difference be-
tween the observed sample yn and the value provided by
the estimated regression model ŷn. The least squares (LS)
method is applied to determine the regression parameters.

Joint characterization of a set of rhythms is provided by
a multiple components model [2], which extends the re-
gression model in (1) to become

yn = M +
∑
i

Ai cos(2πfitn + φi) + en, (2)

Where fi, Ai and φi are the frequency, the amplitude and
the acrophase corresponding to each considered rhythm.

In the present study, weekly, monthly, quarterly and
annual rhythms are considered, since those where the
rhythms of interest selected by the cardiologist.

The LS method is used to find the regression parame-
ters in (2). Next, the rhythmometric method leans toward
a bootstrap hypothesis test [6] to select the rhythm compo-
nents with statistical relevance in (2). The MESOR com-
ponent is used as the starting rhythmometric model. In
order to construct the final model, the method iteratively
adds to the previous model the sinusoidal component in
(2) with the highest amplitude. The mean square error
(MSE) between the signal and each model (Ek) is com-
puted to obtain the difference between the residuals of the
two models (∆Ek = Ek−1−Ek). The statistical relevance
of each model versus the previous one is assessed by using
a paired bootstrap hypothesis test. A number of B random
resamplings with replacement of residuals Ek are made to
obtain ∆Ek for each resampling (B = 2500). A suitable
statistical hypothesis test is to contrast the null hypothe-
sis that the models have the same unexplained variance

 

 

  



Figure 1. Comparison of estimation weights constraints
between LASSO (left) and regularized regression (right).
Adapted from [9].

(∆Ek = 0) against the alternative hypothesis that both
models have different unexplained variance (∆Ek ± 0).
The paired bootstrap hypothesis test determines that the
addition of a new sinusoidal component is relevant when
at least 97.5% of the B values, for the estimated probabil-
ity density function of ∆Ek, are on the right-hand side of
zero; a detailed explanation is found in [7].

3.2. LASSO Path

We propose, in this work, to use a differente approach
to select rhythm components based on regularization tech-
niques. As an alternative to the previous method, we can
fit the complete rhythmometric model and constraint the
coefficients associated to each component. We propose to
use L1 − norm penalization which has the effect of forc-
ing some of the coefficient estimates to be exactly equal to
zero, yielding to sparse models [8].

In order to use this approach, we need to reformulate the
rhythmometric model as a linear one, rewriting 2 as

yn = M+
∑
i

αi cos(2πfitn)+βi sin(2πfitn)+en, (3)

where αi = Ai cos(2πφi) and βi = −Ai sin(2πφi).
Collecting all the coefficients in a vector of weights
w = [1, α1, . . . , αk, β1, . . . , βk], where k is the number of
rhythm components. Using a matrix X to collect all the
components and the MESOR, the rhythmometric model
can be compactly written as

y = Xw + e (4)

Weights of the model, w, can be estimated using LS
including a regularization term:

ŵL2 = argmin
w

‖y −Xw‖22 + λ‖w‖22 (5)

The LASSO approach is shrinkage method like the pre-
vious one, but substituing L2 norm in the regularization

Table 1. Percentage of patients showing each rhythm in
the different time periods: Day, night and in both day and
night.

Rhythm Day (%) Night (%) Both (%)
Annual 72 80 66
Quarterly 22 21 12
Monthly 3 3 1.5
weekly 26 26 12

penalty on weights by L1 norm [9]:

ŵL1 = argmin
w
‖y −Xw‖22 + λ‖w‖1 (6)

where ‖w‖1 =
∑2k+1

j=1 |wj |.
The nature of LASSO constraint allows to control the

number of weights actives (wi 6= 0), so that, making λ
sufficiently large will cause some of the weights to be ex-
actly zero, see Figure 1.

Linear models penalized with the L1 norm have sparse
solutions, so that many of their estimated weights are zero.
Accordingly, it is possible to use LASSO regression mod-
els to report the more important variables (features) of the
model in the sense of mean squared error [10].

It is possible to perform a search on the regularization
parameter λ. This is the so called LASSO path, in which
starting at high values of λ assures that all weights are
equal to zero. Then we give smaller values for λ up to zero.
The idea is to register the event when a weight actives, that
is, when wi 6= 0, meaning that the associated rhythm com-
ponent represent an important variable to explain the HR
signal in the sense of minimum squared error [9]. We per-
formed a complete LASSO path analysis in order to eval-
uate the activation dynamic of the rhythm components as-
suming that the first activated component represents the
most relevant physiological rhythm.

4. Results

Table 1 shows that most of the patients showed a sig-
nificant annual rhythm, either in the daily mean HR, or in
the nightly mean HR, and in many cases in both time pe-
riods. Weekly and quarterly rhythms were also present,
whereas monthly rhythm was rarely present. Most usual
rhythm combinations were annual plus weekly and annual
plus quarterly (see Tab. 2). Figure 2 shows an example
of a HR signal and the fitted model where the annual and
weekly rhythms were significant according to the proce-
dure in Sec. 3.1.

The order of activation given by the LASSO path was in
agreement with the rhythmometric model (Sec. 3.1) in the
86% day/85% night of the patients.

 

 

  



Table 2. Percentage of patients showing each rhythm com-
bination in the different time periods.

Rhythm combination Day (%) Night (%) Both (%)
Annual+weekly 21 21 8
Annual+Quarterly 19 18 8
Annual+Monthly 1.5 2.7 1
Ann.+Quart.+week. 5 4 1
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Figure 2. Example of mean HR evolution and fitted rhyth-
mometric model. A combination of annual and weekly
rhythms were significant for this signal.

5. Conclusions

The unusual long monitoring period, and the high num-
ber of patients in the database, represent an ideal scenario
to robustly assess the existence of long-term rhythms.

In this study two technical approaches were in agree-
ment in most cases, being the LASSO path used for the
first time in rhythmometric analysis. The annual rhythm
was by far the most significant one in the studied popula-
tion.

Further studies will be devoted to assess the relation of
the rhythm presence and the patient clinical data.
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Barquero-Pérez O, Pastor-Pérez FJ, Manzano-Fernández S,
Pascual-Figal DA, Garcı́a-Alberola A. Heart rate variability
on 7-day holter monitoring using a bootstrap rhythmometric
procedure. IEEE Transactions on Biomedical Engineering
2010;57(6):1366–1376.

[8] James G, Witten D, Hastie T. An Introduction to Statistical
Learning: With Applications in R. Springer, 2014.

[9] Tibshirani R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B
1996;58(1):267–288.

[10] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle
regression. The Annals of Statistics 2004;32(2):407–499.

Address for correspondence:

Rebeca Goya-Esteban
Camino del Molino s/n, Departamental III D202, 28943, Fuen-
labrada, Spain
rebeca.goyaesteban@urjc.es

 

 

  


	264-161



