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Abstract 

    Patient monitoring algorithms which use multimodal 
physiological waveforms are needed to reduce alarm 
fatigue by alarming only for physiologic events and not 
signal artifacts. When combining information from 
multiple ECG signals, computational approaches that 
automatically identify artifacts in ECG signals play an 
important role. Signal quality indices (SQIs) have been 
derived which can differentiate between ECG signal 
artifacts and normal QRS morphology. Some of these 
SQIs are derived using beat detections and might be 
affected by the beat detector used. Using ECG signals 
from the PhysioNet/Computing in Cardiology Challenge 
2015 training set, we studied the effect of beat detector on 
previously reported ECG SQIs derived using beat 
detections.  We found that, while being affected by the 
beat detector, some of these SQIs can predict beat 
detector failure. Using beat detector specific SQIs can 
improve the designs of robust monitoring algorithms. 

1. Introduction

Alarm fatigue refers to the high number of clinically 
irrelevant alarms in Intensive Care Units (ICU). Alarm 
fatigue is a top medical device hazard [1] and it has been 
shown, in one study, that up to 88.8% of arrhythmia 
alarms in the ICU are false [2]. Alarm fatigue disturbs 
patient rest, is burdensome to the caregiver staff, and with 
desensitization puts patients at risk with delayed reaction 
times from caregivers [3]. Inappropriate user settings, 
patient conditions, noise and motion artifacts, and 
algorithm performance have been identified as factors 
which contribute to alarm fatigue [4]. Clinicians use 
complementary information available on physiological 

signals from different monitors to recognize false alarms. 
Similar approaches can be used in automatic algorithms 
to reduce false alarms. For example, the Computing in 
Cardiology (CinC) 2015 challenge focused specifically 
on reducing false arrhythmia alarms in the ICU using 
patient monitoring algorithms which use multimodal 
physiological waveforms [5]. However combining 
information from multiple physiological signals 
introduces a new potential risk of adding noise artifacts 
from a low quality signal onto information from a high 
quality signal (e.g. During an asystole episode, one ECG 
signal will have no beats detected due to asystole while 
another noisy ECG can have erroneous beat detections 
and combining these beats will cause the monitoring 
algorithm to miss the true asystole episode). Therefore 
computational approaches that automatically identify 
artifacts in ECG signals play an important role in 
multimodal physiological monitoring algorithm 
development. Signal quality indices (SQIs) have been 
derived which can differentiate between artifacts which 
occur in ECG signals and normal QRS morphology. 
Some of these SQIs are derived using beat detections and 
might have an effect from the beat detector used. Using 
ECG signals from the PhysioNet/Computing in 
Cardiology Challenge 2015 training set, we studied the 
effect of beat detector on previously reported ECG SQIs 
which are derived using beat detections. We characterized 
the distributions of SQIs to assess if previously reported 
SQIs derived using beat detections 1) are affected by the 
beat detector used and 2) can predict beat detector 
performance. 

2. Methods

2.1. Dataset 
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For our analysis on ECG SQIs we used the ECG 
signals in the CinC 2015 training set [5]. We focused our 
analysis on asystole, bradycardia, and tachycardia records 
since ventricular tachycardia and ventricular 
fibrillation/flutter result in extreme modification of the 
ECG waveform. For these alarms, three reviewers 
annotated beat locations during the 10 s periods: during 
alarm and immediately before the alarm. The reference 
annotations were generated if two out of three reviewers 
marked annotations within ±150 ms [6]. We pooled data 
from these three alarm types to get an enriched dataset 
with a wide mean heart rate range where median, 2.5th 
and 97.5th percentile mean heart rate was 98, 29 and 162 
beats per minute (bpm) respectively.  

During the annotation process some of the signals 
were identified to contain pacemaker pulses and since 
pre-processing stages specific for detection and removal 
of pacemaker pulses are available we excluded these 
records from our analysis. This resulted in 648 total ECG 
signals used from the dataset providing 1296 ECG epochs 
corresponding to during alarm and immediately before 
the alarm periods. 

2.2. Selection of signal quality indices and 
beat detectors 

 SQIs that classify ECG signals as either high or low 
quality and derived using beat detections were identified 
from the literature for this study. These were selected 
based on the information available to implement the 
computational method on 10 s single-lead ECG signals. 
The list of SQIs selected for this study is summarized in 
table 1. In the original literature, 10 s epochs were used to 
calculate each of these SQIs from the ECG. 
We selected a set of beat detector algorithms with open 
source implementation to detect beats in the ECG epochs 
we annotated. This set consisted of the Zong [7], Afonso 
[8], Pan [9], Hamilton [10], and Johannesen [11] beat 
detectors. Selected SQIs were calculated using beats 
detected by each of these detectors and reference beat 
annotations. The F1 score to detect beats for two 10 s 
periods with respect to reference beat annotations was 
calculated as 2TP

2TP+FN+FP
[15] (TP [true positive] is the 

number of beats which are within ±150 ms of reference 
beat annotations, FP [false positive] is the number of 
beats the detector incorrectly identified which does not 
have a reference beat annotation within ±150 ms, and FN 
[false negative] is the number of reference beat 
annotations which does not have beat detection within 
±150 ms). For periods where the number of reference 
annotations and number beats detected by a detector is 
both zero, F1 score was set to 100%. Signal analysis was 
performed in Matlab R2014b (The Mathworks, Natick, 
MA). 

Table 1: Implemented Signal Quality Indices 
SQI Feature 

meanhr [12] Mean heart rate for 10 s 
maxrri [12] Maximum RR interval for 10 s 

maxrr2minrr [12] Ratio of maximum RR interval to
minimum RR interval for 10 s 

avecorr [12] 

Average template matching 
correlation coefficient:  
Average of the correlation 
coefficients of each QRS complex 
with mean QRS complex  

qrsa [14] 
Median value of the peak-to-nadir 
amplitude difference of the QRS 
complexes in 10 s 

sdrr2meanrr [13] Ratio of the standard deviation of
RR interval to mean RR interval 

rangeqrs [13] 

Range of signal amplitude around 
QRS detection: 
Maximum minus the minimum 
signal amplitude within a QRS 
complex 

bw [11] Baseline wander estimation using
cubic spline 

pln [11] Power line noise estimation using
regression-subtraction  

residual [11] 

Residual noise by subtracting the 
estimated signal (median over 10 s)
after subtracting baseline wander and 
power line noise  

(The Mathworks, Natick, MA). 

2.4. Statistical Analysis 

The hypothesis that an SQI calculated using different 
beat detectors would have the same distribution was 
tested using Kruskal-Wallis test followed by post-hoc 
Dunn's test with Bonferroni correction for multiple 
comparisons.  

An SQI might have a different distribution based on 
the beat detector used but still be able to predict the 
detector performance. We studied the ability of these 
SQIs to predict beat detector performance, using area 
under the receiver operating characteristic curve (AUC) 
to discriminate epochs which have “F1 score ≤ 90%” 
(considered poor detector performance) vs. “F1 score > 
90%” (considered acceptable detector performance). All 
statistical calculations were conducted in R version 3.2.2 
(R Foundation for Statistical Computing, Vienna, 
Austria).   

3. Results

All SQIs had p < 0.001 in Kruskal-Wallis test 
suggesting at least one SQI had a different distribution 

 

 

  



due to the beat detector used. Table 2 summarized the 
Bonferroni corrected Dunn's test p-value when compared 
to the SQI calculated using reference annotations. Signal 
quality indices minimum RR interval, maximum RR 
interval to minimum RR interval ratio, standard deviation 
of RR interval to mean RR interval ratio and average 
template matching correlation coefficient had Bonferroni 
corrected Dunn's test p < 0.05 across all beat detectors 
indicating that they have different distributions compared 
to the distribution derived using reference annotations 
depending on the beat detector used. For all other SQIs 
whether they had a different distribution than that from 
reference depended on the beat detector. 

The AUC values for the SQIs to classify into groups 
“F1 score ≤ 90%” vs. “F1 score > 90%” are reported in 
table 3. Average template matching correlation 
coefficient had one of the three highest AUC values for 
each detector with an AUC closer to 0.9 except for 
Afonso [8] for which the AUC = 0.7. Figure 1 shows 
distributions of F1 score for each detector and distribution 
of average template matching correlation coefficient for 
each group: “F1 score ≤ 90%” and “F1 score > 90%” for 
each beat detector.  

4. Discussion

Signal quality indices derived using beat detections 
have the potential to have different distributions 
depending on the beat detector used which might affect 

Table 2: Bonferroni corrected Dunn's test p-value when 
SQI calculated using each beat detector is compared to 
the SQI calculated using reference annotations. 
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meanhr 0.062 * 1.0 * * 
sdrr * * 0.001 * 1.0
sdrr2meanrr * * * * * 
maxrri * 1.0 0.715 1.0 * 
minrri * * * * * 
maxrr2minrr * * * * * 
avecorr * * * * * 
rangeqrs 0.002 0.002 * 0.017 1.0
qrsa 1.0 0.952 1.0 * * 
bw * 0.049 0.210 1.0 * 
pln * 0.036 0.032 0.529 0.103
resn * 0.001 1.0 0.003 * 

*: p < 0.001, shaded: p > 0.05 

Table 3: AUC values for SQIs for discrimination between 
groups “F1 score ≤ 90%” vs. “F1 score > 90%”. Three 
highest AUC values for each detector (column) are 
shaded. 
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meanhr 0.66 0.80 0.50 0.66 0.83 
sdrr 0.66 0.77 0.74 0.76 0.60 
sdrr2meanrr 0.71 0.87 0.77 0.82 0.72 
maxrri 0.52 0.63 0.68 0.67 0.57 
minrri 0.71 0.83 0.67 0.78 0.90 
maxrr2minrr 0.72 0.86 0.75 0.81 0.77 
avecorr 0.69 0.89 0.87 0.87 0.95 
rangeqrs 0.51 0.53 0.54 0.53 0.56 
qrsa 0.50 0.54 0.49 0.52 0.57 
bw 0.60 0.60 0.59 0.58 0.64 
pln 0.61 0.70 0.65 0.67 0.68 
resn 0.65 0.70 0.64 0.65 0.63 

their ability to discriminate high quality ECG segments 
from those of low quality. We studied which SQI have 
beat detector dependent distributions and whether they 
can still differentiate ECG segments where the beat 
detector had superior beat detection performance in an 
enriched dataset with arrhythmia and wide range of mean 
heart rate. 

Although distribution of average template matching 
correlation coefficient depends on the beat detector used, 
it can consistently discriminate between performance 
groups for four out of five detectors. For detectors 
Johannesen [11], Hamilton [10] and Pan [9], SQIs, 
maximum RR interval to minimum RR interval ratio and 
standard deviation of RR interval to mean RR interval 
ratio also discriminated between the two performance 
groups (AUC > 0.7). Therefore when these beat detectors 
are used in monitoring systems, the SQIs, average 
template matching correlation coefficient, maximum RR 
interval to minimum RR interval ratio and standard 
deviation of RR interval to mean RR interval ratio may 
have utility to identify high quality ECG epochs. 
Similarly for detector Zong [7], the combination of SQI 
which can best detect detector failure is average template 
matching correlation coefficient, mean heart rate and 
minimum RR interval. The highest AUC value for the 
detector Afonso [8] is 0.72 which suggests that none of 
the studied SQI can successfully predict the detector 
failure. The detector Afonso [8] also has an F1 score 
distribution showing inferior performance than the other  

 

 

  



Fig. 1: (a) F1 score distribution for each beat detector. 
The number of ECG epochs in each group: “F1 score ≤ 
90%” and “F1 score > 90%” for each detector is shown 
on the figure. (b) Distribution of average template 
matching correlation coefficient (avecorr) calculated 
using reference annotations and for each group “F1 score 
≤ 90%” and “F1 score > 90%” for each beat detector. 

four detectors in this dataset (figure 1a). 
The ability of SQIs to predict detector failure is 

detector dependent, since the method used to detect heart 
beats by each detector is different. We found this to be 
true in our study as the best set of SQIs changed with the 
detector used. Therefore choosing SQIs based on the beat 
detector, or assessing the best SQI for the selected beat 
detector, could improve the design of robust monitoring 
systems. 
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