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Abstract

A new method for non-uniform interpolation of electro-
anatomical cardiac maps from Cardiac Navigation Sys-
tems (CNS) is here proposed and benchmarked. We
adapted the equations of support vector machines for es-
timation problems in terms of the two angular dimensions
azimuth and elevation and used an autocorrelation kernel.
Moreover, the influence of the number of spatial locations,
its minimum number to obtain a map that precisely repli-
cates the original or gold-standard and the effect of work-
ing in 2D from 3D were also studied. Two basic simulation
scenarios were used: (a) a prolate semi-ellipsoid, yielding
a geometry similar to the ventricular chamber, with differ-
ent width pulse and Gaussian activations; and (b) detailed
simulated models of cardiac activity in the atria. Results
were compared with those obtained with other interpola-
tion methods. In the Gaussian and pulse-like activations
the largest decrease in mean absolute error (MAE) for the
test set was achieved by using 150 spatial locations (MAE
from 0.007 to 0.117). In the simulation models the er-
ror stabilized at 500 spatial locations (MAE from 0,002 to
0.014). The proposed method can provide improved qual-
ity for electro-anatomical maps interpolation.

1. Introduction

Arrhythmias are alterations of normal cardiac rhythm,
which cause the heart to abnormally beat too fast, too
slow, or with an irregular rthythm [1]. Cardiac Naviga-
tion Systems (CNS) allow replicating the patient cardiac
anatomy in a computer system, addressing catheters pre-
cisely within the heart, and registering the cardiac electri-
cal activity. The integration of both anatomical and elec-
tric data compounds electro-anatomical maps of the car-
diac chamber, in which a compromise between map quality
and its acquisition time is required. Given that the electri-
cal feature is measured only in a few spatial locations, an
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interpolation algorithm is needed to estimate the feature
value at points with no measure and build the map from
those samples. Precision in the diagnosis and treatment of
arrhythmias using CNS is directly related to the quality of
the map, and hence to the interpolation method to be con-
sidered [2].

In this work, a Support Vector Machine (SVM) algo-
rithm with autocorrelation (AC) kernel has been chosen
as interpolation method because of its promising results
versus other interpolation methods in the presence of non-
uniform data [2]. The effect of working in 2D is also stud-
ied, and compared to 3D Cartesian coordinates of the spa-
tial locations, so that the corresponding values of an elec-
trical feature measured on those 3D spatial locations were
transformed to spherical coordinates and then the radius
coordinate was discarded.

The data used to evaluate the algorithm under study are
a set of four simple features over the surface of a pro-
late semiellipsoid and some activation time maps obtained
from two simulations which replicate the structure of maps
generated by a CNS.

The paper is organized as follows. Section 2 contains
the details of the SVM interpolation algorithm considered.
In Section 3, the materials and methods used are detailed.
In Section 4, the performed experiments are described and
their results are shown. In Section 5, the conclusions
reached from results are shared.

2. Non-uniform interpolation with SVM

Several previous works studied the influence of the
interpolation methods in the quality of cardiac electro-
anatomical maps [2, 3]. In [2], Triangulated Irregular Net-
work (TIN), Thin Plate Spline (TPS), and SVM with Ra-
dial Basis Function (RBF) kernel were studied for anatom-
ical and electro-anatomical maps interpolation. That work
concluded that TPS, followed by SVM with RBF kernel,
yielded the best results in terms of precision and computa-
tional cost. In order to improve the results of that work, we
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Figure 1. Geometry and activations of synthetic data, for
(a) Wide Gaussian, (b) Narrow Gaussian, (c) Wide Pulse,
and (d) Narrow Pulse.

propose here to use an SVM algorithm with an AC kernel
that has stood out on the RBF kernel with both uniform
and non-uniform sampling in other applications [4].

The SVM model for electro-anatomical cardiac maps
estimation uses the following nonlinear regression model:
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Considering a dataset D = {x1,41},...,{®N,yn}, T €
R4, y € R, where d is the dimension of the input data, NV
is the number of samples, and the »-SVR algorithm func-
tional to be minimized is the following:
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where the first term is an L2 regularization and the second
term is the e-insensitive loss function, with € being the in-
sensitiveness parameter; C' is a pre-established parameter
that allows us to adjust the compromise between the error
tolerance and the softness of the regression; §; and &; are
the slack variables, which represent the excess of error for
each sample (x;,y;), according to the loss function used;
and v is the parameter used to control the variable e, which
is the maximum deviation from the real value allowed at
each point. Taking into account the following constrains,
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and using a Lagrangian functional, the solution to the non-
linear SVR is
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where 7;,7 = 1,2,...N are scalars, and samples x; for
which 7; # 0 are the so named support vectors. Thus,
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which is the same as:
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That is, the solution can be linearly expressed in terms
of the kernel function. Among the most common Mercer
kernels, we find the linear and the Gaussian ones. Here,
we propose to use the AC kernel, able to get a better adap-
tation to this type of data, following the ideas in [4] for
interpolating one-dimensional signals. Thus,
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where R, is the spatial correlation of the feature y to be
interpolated. This kernel is able to adapt spectrally to both
low-pass and band-pass signals.

3. Materials and methods

Two datasets, which simulate electro-anatomical car-
diac maps, were used to evaluate the proposed algorithm.
Firstly, some synthetic data produced ad-hoc to ensure the
suitability of the implementation of the algorithm. These
data consist of four simple features over the surface of a
prolate semiellipsoid having its longest radius along its
body and with a flat elliptical lid. The highest radius is
150% higher than the lowest radius 7y on the lid ellipse,
and the other lid radius is 50% higher than the lowest one.
With this geometry, we intended to emulate a left ventricle,
as seen in Fig. 1. The features synthesized are a couple of
Gaussian and a couple of uniform or pulse-like features.

The widest Gaussian feature was designed so that most
of its variation is spread across the upper half of the semiel-
lipsoid, occupying part of its lid, whereas the narrowest
gaussian feature was designed so that variation is fully lo-
cated entirely on the curved area, without occupying the
lid at all. The pulses allow us to observe how the algo-
rithm responds to scarce yet abrupt variations. The widest
one provides a way to evaluate how the algorithm could
respond to feature discontinuities between values more or
less with the same frequency, while the narrowest one is
useful to evaluate how the algorithm could respond to the
presence of outliers.

Secondly, we used simulated data generated with a de-
tailed computer model [5]. They comprise four activation



Table 1. Results (MAE and execution time) on synthetic
features for different interpolation and validation methods.
Feature | Property | NN&HOV | LI&HOV | LI&CV |

WG MAE 0.0125 0.0081 0.0045
Time (s) 90.28 95.85 422.16
NG MAE 0.0071 0.0034 0.0017
Time (s) 79.35 75.76 421.96
WP MAE 0.0751 0.0674 0.0543
Time (s) 81.64 76.75 449.01
NP MAE 0.0297 0.0178 0.0129
Time (s) 80.32 76.69 504.19
Table 2. MAE of different interpolators for simulation

data with 1200 training spatial locations.
| Rhythm | 2DACSVM | 3DACSVM | RBFSVM | TPS |

RA SR 0.0017 0.0018 0.0022 0.0010
LA SR 0.0037 0.0035 0.0021 0.0014
RAFL 0.0156 0.0126 0.0179 0.0073
LAFL 0.0117 0.0029 0.0023 0.0023

time maps obtained from two simulations that correspond
to a flutter (FL) and to a sinus rhythm (SR) in the right
atrium (RA) and in the left atrium (LA).

The maps data consisted of the Cartesian coordinates
(z,y, z) of every vertex on the map and their correspond-
ing feature (activation time, voltage, latency...) values.

Although the electro-anatomical maps of CNS are de-
fined in 3D, we also explored a 2D-SVM interpolation
from these data and compared the results with those of
a 3D-SVM. Thus, for 2D-SVM, a coordinates conversion
from Cartesian to spherical system was performed previ-
ous to the SVM processing, being the radial coordinate
discarded and preserving only the angular coordinates, el-
evation and azimuth.

The proposed algorithm implies the estimation of the
AC of the differences between every sample pair in the
training dataset. To make this possible, the training sam-
ples had to be converted first into a uniform sampled
dataset. Hence, a uniform resampling of the electrical
feature training samples was performed interpolating them
onto a uniform grid. Searching accuracy in the result, the
grid was built for the 2D-SVM with as many positions in
each dimension as the size of the training dataset. In order
to avoid too heavy computational burden in 3D-SVM, this
design was adapted with a number of grid positions in each
dimension of only the ceiling of the cubic root of the size
of the training dataset. Two different interpolation meth-
ods were considered, namely, nearest neighbors (NN) and
linear interpolation (LI).

Both hold-out validation (HOV) and cross-validation
(CV) were tried and compared. CV was implemented as
a k-fold validation with & = 5. This number of folds al-

lowed not too long tests with a suitable quality.

For synthetic and simulated data, the subsets used in
training, validation, and test were randomly picked from
the full dataset. Results evaluation was conducted tak-
ing the Mean Absolute Error (MAE) as the reference error
measure in both plane and 3D representations.

4. Results

A balance between quality and processing time can be
achieved by exploring 20 values of C' (from 0.5 to 10) and
v (from 0.05 to 1). This tuning strategy was applied to the
whole work.

Synthetic Data Experiments. In these experiments, we
consider NN and LI as interpolation methods, and HOV
and 5-fold CV as validation methods. Table 1 summarizes
the test results for 500 training points and 700 validation
points in HOV and 1200 training-validation points in CV.
It shows the MAE and the algorithm execution time for the
selected algorithm parameters after tuning. LI reduces the
MAE 35% for the WG, 52% for the NG, 10% for the WP,

and 40% for the NP. However, the interpolation method do
not seem to influence the algorithm execution time. The

better the quality is (the lowest MAE) with LI in relative
terms. On the other hand, it is observed a MAE reduction
with CV over HOV of 45% for the WG, 49% for the NG,
19% for the WP, and 27% for the NP. These results made
clear the need of using LI and CV.

Figure 2 compares the absolute error results of the 2D
and the 3D versions with 1200 spatial locations. It also
includes a 3D representation over the semiellipsoid surface
for each algorithm version, that allows us to evaluate the
results also visually. The 3D error peaks are lower than the
2D peaks for the WG and look in general lower for the WP
too (though the relative difference is lower in this case), but
the 3D peaks are higher than the 2D peaks for both narrow
features. Visually, only the WG presents better results in
3D. Thus, it is worth to work in 2D version.

Simulation Data Experiments. These experiments
used the two SR and the two FL simulation latency maps
data described in the previous section. Table 2 gathers the
validation MAE for the 2D and the 3D versions of the
AC SVM algorithm obtained from this work and for the
RBF SVM algorithm and the TPS algorithm of the previ-
ous work [2] with their respective widest training datasets.
Note that 1200 spatial locations use the AC SVM algo-
rithm and 500 spatial locations use the RBF SVM and TPS
algorithms. Only validation results can be compared with
those of the previous work [2] for the RBF SVM and TPS
algorithms, since there are no test results in that study. It
must be taken into account that the present work training
dataset might not have any spatial locations in common
with the one of the previous work. The SVM algorithm
with AC kernel overcomes the SVM with RBF kernel for
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Figure 2. Absolute Errors of the synthetic test data and 2D and 3D interpolations of the synthetic features with 1200
training spatial locations, for (a) Wide Gaussian, (b) Narrow Gaussian, (c¢) Wide Pulse, and (d) Narrow Pulse.

the RA rhythms (either SR or FL). The 2D AC SVM gets
slightly better results than the 3D AC SVM algorithm for
the RA SR. For the rest of the simulation rhythms latency
maps, the 3D version of the AC SVM algorithm provides
better results in terms of MAE than the 2D version. Thus,
the 2D SVM-based interpolation with AC kernel can be
an alternative to other traditional interpolation methods for
CNS data.

5. Conclusions

A SVM algorithm with AC kernel has been studied
as non-uniform interpolator of electro-anatomical cardiac
maps from CNS. Moreover, the influence of the number
of spatial locations and its minimum number to obtain a
map that precisely replicates the original or gold-standard
have also been studied. Finally, the effect of working in
2D was studied and compared with 3D algorithms. The re-
sults with synthetic and simulation data shown that a SVM
algorithm with AC kernel can be an alternative to other tra-
ditional non-uniforms interpolators for CNS data, both 2D
and 3D versions. Oncoming work is devoted to extend this
work to real scenario comprising some CNS real data of
different cardiac chambers.
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