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Abstract

In patients with atrial fibrillation (AF), the dominant
repetition rate of the atrial fibrillatory waves (f-waves),
or fibrillatory frequency (FF), (usually in the range 3-12
Hz) plays an important role for non-invasive assessment of
atrial electrical remodeling. It is usually assessed from the
electrocardiogram (ECG) by signal processing tools such
as power spectral analysis and short-time Fourier trans-
form (STFT), after ventricular activity (VA) cancellation.

FF can also be estimated simultaneously with VA de-
tection using an extended Kalman smoother (EKS), as re-
cently proposed by us. In this paper, we try to simplify the
model and adapt it to situations in which less computa-
tional power is available and only short signals are con-
sidered (e.g., mobile or E-health applications). In the pro-
posed model, the ventricular activity (VA) is represented
by a sum of Gaussian kernels, while a single sinusoidal
function with constant frequency is employed for the atrial
activity (AA). The strategy was validated using 290 syn-
thetic signals obtained from ECGs in sinus rhythm (Phys-
ionet PTBDB), where P-waves were replaced by artificial
f-waves, at different signal-to-noise (SNR) ratios. At a SNR
of 0, 20 and 40 dB, the average root mean square errors
were 0.22, 0.08 and 0.01 Hz respectively.

1. Introduction

In patients with atrial fibrillation (AF), the dominant
repetition rate of the atrial fibrillatory waves (f-waves),
or fibrillatory frequency (FF, usually in the range 3-12
Hz) plays an important role for non-invasive assessment
of atrial electrical remodeling. It can be assessed from the
electrocardiogram (ECG) by signal processing tools such
as power spectral analysis and short-time Fourier trans-
form (STFT), after atrial activity (AA) isolation. However,
atrial and ventricular activities (VA) overlap in both time
and frequency. As a result, the basic problem is to extract
the f-waves from the mixture of ventricular (QRS-T) and
atrial signals, where the interfering ventricular signals are
much stronger. Hence most of the existing procedures deal
with the cancellation of QRS-T, instead of directly with
extraction of f-waves.

The current methods for VA cancellation are based on
single, (e.g. average beat subtraction, ABS [1], adaptive
singular value decomposition, SVD [2], wavelet transform
[3], maximum likelihood estimation, MLE [4]) or multi-
channel recordings (e.g. spatiotemporal QRS-T cancella-
tion [1], blind source separation, BSS [5, 6], and principal
component analysis, PCA [7]). FF estimation simultane-
ously with VA detection has been recently proposed in [8].
The goal of this paper is to simplify the model proposed
in [8] and adapt it to situations in which there is less com-
putational power at disposal, and only short signals are of
interest (e.g., mobile or e-health applications).

2. Method

2.1. Extended Kalman Filter

Lets consider the following dynamical system with hid-
den state vector xk and observation vector yk{

xk+1 = f(xk, wk, k)

yk = g(xk, vk, k)
, (1)

where f(·) is the evolution state function, g(·) represents
the relationship between the hidden state and observations,
wk and vk are process noise and measurement noise, with
the corresponding covariance matrices Qk = E{wkwTk }
and Rk = E{vkvTk }. The extended Kalman filter (EKF) is
a nonlinear extended version of the well-known Kalman
filter (KF) to estimate the hidden states of (1). An ex-
tended Kalman Smoother (EKS), which consists of a for-
ward EKF stage followed by a backward recursive smooth-
ing stage, can be employed after EKF for smoother results.
In fact, it provides better estimates of the current states
since it uses information brought by “future” observations.

2.2. Normal ECG modelling

A normal ECG beat can be represented as a linear com-
bination of Gaussian functions with different amplitudes
and widths centered at specific points in time [9, 10]:

z =
∑

i∈{P,Q,R,S,T}

αi exp

[
− (t− θi)2

2b2i

]
. (2)
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Figure 1. AA, VA and FF estimation using EKF and EKS for a typical ECG signal.

Eq. (2) can be coupled with a model of the heart rate dy-
namics, to synthesize multiple ECG beats with arbitrary
heart rates [9]:


θ̇ = ω

ż = −
∑

i∈{P,Q,R,S,T}

αiω
θ − θi
b2i

exp

[
− (θ − θi)2

2b2i

]
,

where ω is the angular velocity of the trajectory as it moves
around the limit cycle, θ is the cardiac phase, which is de-
fined between −π and π, αi, bi and θi adapt amplitude,
width and center of the Gaussian kernels to the different
ECG morphologies.

2.3. ECG modelling during AF

During AF, the P wave is absent and replaced by a sort
of fluctuation of the baseline. Hence, we speculated that
the ECG, on any lead, can be described by sum of Gaus-
sian functions plus a sinusoidal model with a fundamental
frequency and its harmonics [8]. In this work, we try to
simplify further the model considering a single sinusoid
for AA description. A possible discrete time model for

ECG signal (sk) during AF is then of the form:
θk+1 = (θk + ωδ) mod 2π

sk =
∑

i∈{Q,R,S,T}

αi exp

[
− (θk − θi)2

2b2i

]
+ p cos(wck + ϕ)

,

(3)
where fs is the sampling rate, wc = 2πfc/fs, p and ϕ
are respectively the frequency, amplitude and phase of the
sinusoid. In order to use the model with Kalman filter and
track AA, VA as well as the frequency of the sinusoid, we
recast (3) into:

Process equation:

θk+1 = (θk + ωδ) mod 2π

wc,k+1 = wc,k

zk+1 = zk − ωδ
∑

i∈{Q,R,S,T}

αi
θk − θi
b2i

exp

[
− (θk − θi)2

2b2i

]
φk+1 − 2 cos(nwc,k)φk + φk−1 = ηφ

(4)
Observation equation:{

ψk = θk + v1,k

sk = zk + φk + v2,k
, (5)

where δ = 1/fs is the sampling interval, sk is the real ECG
and ψk is the noisy cardiac phase at time instant k. ηφ is
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Figure 2. Mean and standard deviation of RMSE in
frequency estimation for constant frequency by means of
EKF and EKS, as a function of the broadband noise con-
taminating the input signal.

a i.i.d. Gaussian random variable representing the possi-
ble model errors, changes of fundamental frequency and
phase. Finally v1 and v2 are zero mean random variables
considered to be observation noise.

2.4. Bayesian Filtering Framework

The new ECG model can be utilized in a Bayesian
framework for constant FF tracking, VA and AA separa-
tion. Considering the process and observation equations
(4) and (5), the state variables vector, xk, the observation
vector, yk, the process noise vector, wk, and the observa-
tion noise vector, vk, are defined as follows:

xk = [θk, wc,k, zk, φk−1, φk]T

yk = [ψk, sk]
wk = [αi, bi, θi, ηφ, ω]
vk = [v1k , v2k ]

, (6)

with the corresponding process noise and measurement
noise covariance matrices Qk = E{wkwTk } and Rk =
E{vkvTk }.

2.5. AF synthetic signals

We implemented the proposed Bayesian framework and
applied it on synthetic signals taken from the PhysioNet
PTB Diagnostic ECG Database [11] (sampling frequency:
1000 Hz; resolution: 16-bit). 290 ECG segments (one
from each subject), with duration of 30s, were selected
from each of the twelve conventional leads, at the begin-
ning of the recording. P-waves were separated and re-
moved using the approach proposed for ECG components
separation in [12]. Then synthetic f-waves were generated

using a sawtooth model introduced in [1, 13], and added
to the ECG segments to study the performance of the pro-
posed filter. The synthetic f-wave model is described by a
fundamental components and M − 1 of its harmonics

ξd,k =
M∑
m=1

am,k sin

[
mω0k +

∆f

ff
sin(ωfk)

]
,

where the fundamental frequency ω0 = 2πf0 has the max-
imum deviation ∆f and the modulation frequency ωf =
2πff . Furthermore the amplitude am,k is defined so that a
signal with sawtooth characteristic is produced

am,k =
2

mπ
[a+ ∆a sin(ωak)] ,

where a denotes the sawtooth amplitude, ∆a the modu-
lation peak amplitude and ωa = 2πfa is the amplitude
modulation frequency. In our simulations, we selected:
M = 3, ∆f ≈ 0.25 Hz, ff ≈ 0.2 Hz, fa ≈ 0.2 Hz, ηφ
was set to the average variance of the perturbation found
around baseline (where no QRS-T complex are present),
across the different beats used to build the template and
f0 ∈ {6, 7, 8, 9} Hz. Figures 1(a) and 1(d) display a typi-
cal synthetic ECG signal.

Furthermore, we produced signals varying the power of
v2,k. The signal-to-noise ratio (SNR) was modulated in the
range of 0, 20 and 40 dB.

3. Results

For building the EKF/EKS, one need an initial estimate
of fc,0. For this purpose we randomly selected fc,0 be-
tween 5 to 8 Hz. As a primary example the output of the
EKF and EKS model for FF, AA and VA estimation are
shown in Figures 1(a) to 1(f). As it may be seen, results of
the EKF and EKS follow accurately the FF patterns, QRS-
T and f-wave.

To quantify the performances of the method, we em-
ployed the root mean square error (RMSE) defined as:

RMSE =

√∑
n

(
fc,n − f̂c,n

)2
,

where fc,n is the original fundamental frequency and f̂c,n
is the estimated fundamental frequency.

The values of RMSE at different input SNRs, averaged
over the 290 ECG segments, are plotted in Fig. 2. The
simulation results show that the EKS is able to track the
fundamental frequency with an error smaller than 0.22 Hz
for all SNRs.

4. Discussion and Conclusion

We have validated a simple case of the previously intro-
duced EKF/EKS model for ECG analysis during AF. By

 

 

  



considering a sum of Gaussian functions for representing
the VA and a single sinusoidal function with constant fre-
quency for AA, the simple EKS structure is suitable for
the situations in which less computational power is avail-
able and only short signals are available. In the proposed
method, the model of VA, AA and FF are utilized as hid-
den state variables. These hidden-state variables are es-
timated as a time series through the EKF/EKS structure.
Henceforth, the ECG components (VA, AA and FF) are
estimated simultaneously using signal expansion over the
estimated basis functions.

The designed filter/smoother was applied to synthetic
ECG signals, and the results demonstrate the filter’s capa-
bility in tracking the FF, VA and AA simultaneously. We
found that for short recording signals, a single sinusoidal
function with constant frequency is sufficient for AA mod-
elling. Since the frequency of the sinusoidal function is
constant, the proposed method is suitable for the situations
in which the FF does not change in time, which is typi-
cal of short interval of observation (over long time scales
the hypothesis of a constant FF starts being questionable).
Mobile or e-health applications are a perfect example of a
context in which the present method would prove effective.
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